Abstract

Thermoelastohydrodynamic (TEHD) mixed lubrication characteristics of a step-combined rod seal under high-pressure and high-speed conditions are analyzed in this article. A novel TEHD mixed lubrication model for combined rod seals is innovatively established from the perspective of “seal-film-rod” system for the first time. Parameterized studies are conducted to evaluate the thermal effect on seal behavior with the comparison of isothermal elastohydrodynamic (EHD) lubrication analysis. Numerical results show that the interface friction heat is quite remarkable and mainly concentrated on the sealing lip, especially in high pressure and speed cases. With the increasing sealed pressure or rod speed, the temperature rise becomes more obvious and has a more significant impact on the sealing performance. The excessively rising temperature will even exceed the melting point of the sealing material, causing thermal damage.

References

1.
Nikas
,
G. K.
,
2010
, “
Eighty Years of Research on Hydraulic Reciprocating Seals: Review of Tribological Studies and Related Topics Since the 1930s
,”
Proc. Inst. Mech. Eng. J: J. Eng. Tribol.
,
224
(
1
), pp.
1
23
.
2.
McKee
,
M.
, and
Gordaninejad
,
F.
,
2018
, “
Reciprocating Shaft Seals for High-Temperature and High-Pressure Applications: A Review
,”
ASME J. Tribol.
,
140
(
3
), p.
032202
.
3.
Peng
,
C.
,
Guo
,
S. R.
,
Ouyang
,
X. P.
,
Zhou
,
Q. H.
, and
Yang
,
H. Y.
,
2018
, “
Mixed Lubrication Modeling of Reciprocating Seals Based on a Developed Multiple-Grid Method
,”
Tribol. Trans.
,
61
(
6
), pp.
1151
1161
.
4.
Peng
,
C.
,
Ouyang
,
X. P.
,
Schmitz
,
K.
,
Guo
,
S. R.
, and
Yang
,
H. Y.
,
2021
, “
Numerical and Experimental Study on Combined Seals With the Consideration of Stretching Effects
,”
ASME J. Tribol.
,
143
(
6
), p.
062301
.
5.
Mahankar
,
P. S.
, and
Dhoble
,
A. S.
,
2021
, “
Review of Hydraulic Seal Failures Due to Effect of Medium to High Temperature
,”
Eng. Fail. Anal.
,
127
, p.
105552
.
6.
Gan
,
L.
,
Xiao
,
K.
,
Wang
,
J. X.
,
Pu
,
W.
, and
Cao
,
W.
,
2019
, “
A Numerical Method to Investigate the Temperature Behavior of Spiral Bevel Gears Under Mixed Lubrication Condition
,”
Appl. Therm. Eng.
,
147
, pp.
866
875
.
7.
Liu
,
Z.
,
Pickens III
,
D.
,
He
,
T.
,
Zhang
,
X.
,
Liu
,
Y.
,
Nishino
,
T.
, and
Jane Wang
,
Q.
,
2019
, “
A Thermal Elastohydrodynamic Lubrication Model for Crowned Rollers and Its Application on Apex Seal-Housing Interfaces
,”
ASME J. Tribol.
,
141
(
4
), p.
041501
.
8.
Thielen
,
S.
,
Magyar
,
B.
, and
Sauer
,
B.
,
2020
, “
Thermoelastohydrodynamic Lubrication Simulation of Radial Shaft Sealing Rings
,”
ASME J. Tribol.
,
142
(
5
), p.
052301
.
9.
Maoui
,
A.
,
Hajjam
,
M.
, and
Bonneau
,
D.
,
2008
, “
Numerical Analysis of Thermoelastohydrodynamic Behavior of Elastomer Radial Lip Seals
,”
ASME J. Tribol.
,
130
(
2
), pp.
181
190
.
10.
Liu
,
D.
,
Wang
,
S. P.
, and
Zhang
,
C.
,
2018
, “
A Multiscale Wear Simulation Method for Rotary Lip Seal Under Mixed Lubricating Conditions
,”
Tribol. Int.
,
121
, pp.
190
203
.
11.
Pinedo
,
B.
,
Hadfield
,
M.
,
Tzanakis
,
I.
,
Conte
,
M.
, and
Anand
,
M.
,
2018
, “
Thermal Analysis and Tribological Investigation on TPU and NBR Elastomers Applied to Sealing Applications
,”
Tribol. Int.
,
127
, pp.
24
36
.
12.
Kong
,
Y. B.
,
Shen
,
M. X.
,
Zhang
,
Z. N.
,
Meng
,
X. K.
, and
Peng
,
X. D.
,
2019
, “
Thermal Characteristics of Reciprocating Friction of Rubber O-Ring Against Stainless Steel Surface
,”
J. Shanghai Jiaotong Univ.
,
53
(
11
), pp.
1352
1158
.
13.
Heipl
,
O.
, and
Murrenhoff
,
H.
,
2015
, “
Friction of Hydraulic Rod Seals at High Velocities
,”
Tribol. Int.
,
85
, pp.
66
73
.
14.
Qin
,
K.
,
Zhou
,
Q.
,
Zhang
,
K.
,
Li
,
S. S.
,
Lv
,
M. H.
,
Xia
,
B. R.
, and
Bai
,
S. X.
,
2021
, “
Differences in Wear Tongue Development: Thermal Degrade Effect on the Tribological Behavior of FKM O-Ring Seals
,”
Tribol. Lett.
,
69
(
4
), p.
125
.
15.
Xin
,
L.
,
Gaoliang
,
P.
,
Zhe
,
L.
,
2014
, “
Prediction of Seal Wear With Thermal–Structural Coupled Finite Element Method
,”
Finite Elem. Anal. Des.
,
83
, pp.
10
21
.
16.
Lingerkar
,
K.
, and
Khonsari
,
M. M.
,
2010
, “
On the Effects of Sliding Velocity and Operating Pressure Differential in Rotary O-Ring Seals
,”
Proc. Inst. Mech. Eng. J: J. Eng. Tribol.
,
224
(
7
), pp.
649
657
.
17.
Yang
,
B.
, and
Salant
,
R. F.
,
2011
, “
Elastohydrodynamic Lubrication Simulation of O-Ring and U-cup Hydraulic Seals
,”
Proc. Inst. Mech. Eng. J: J. Eng. Tribol.
,
225
(
7
), pp.
603
610
.
18.
Wang
,
B. Q.
,
Peng
,
X. D.
, and
Meng
,
X. K.
,
2018
, “
Simulation of the Effects of Non-Newtonian Fluid on the Behavior of a Step Hydraulic Rod Seal Based on a Power Law Fluid Model
,”
J. Zhejiang Univ. Sci. A
,
19
(
11
), pp.
824
842
.
19.
Peng
,
C.
,
Ouyang
,
X. P.
,
Schmitz
,
K.
,
Wang
,
W.
,
Guo
,
S. R.
, and
Yang
,
H. Y.
,
2021
, “
Investigation of the Tribological Performance of Reciprocating Seals in a Wide Temperature Range
,”
Proc. Inst. Mech. Eng. J: J. Eng. Tribol.
,
235
(
11
), pp.
2396
2414
.
20.
Xiang
,
C.
,
Guo
,
F.
,
Jia
,
X. H.
,
Wang
,
Y. M.
, and
Huang
,
X.
,
2019
, “
Thermo-Elastohydrodynamic Mixed-Lubrication Model for Reciprocating Rod Seals
,”
Tribol. Int.
,
140
, p.
105894
.
22.
Thatte
,
A.
, and
Salant
,
R. F.
,
2010
, “
Visco-Elastohydrodynamic Model of a Hydraulic Rod Seal During Transient Operation
,”
ASME J. Tribol.
,
132
(
4
), p.
041501
.
23.
Thatte
,
A.
, and
Salant
,
R. F.
,
2012
, “
Effects of Multi-Scale Viscoelasticity of Polymers on High-Pressure, High-Frequency Sealing Dynamics
,”
Tribol. Int.
,
52
, pp.
75
86
.
24.
Mooney
,
M.
,
1940
, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
,
11
(
9
), pp.
582
592
.
25.
Rivlin
,
R. S.
,
1948
, “
Large Elastic Deformations of Isotropic Materials. I Fundamental Concepts
,”
Phil. Trans. R. Soc. Lond. A
,
240
(
822
), pp.
459
490
.
26.
Peng
,
C.
,
Ouyang
,
X. P.
,
Zhu
,
Y.
,
Guo
,
S. R.
,
Zhou
,
Q. H.
, and
Yang
,
H. Y.
,
2018
, “
Investigation Into the Influence of Stretching on Reciprocating Rod Seals Based on a Novel 3-D Model vs Axisymmetric Model
,”
Tribol. Int.
,
117
, pp.
1
14
.
27.
Fazekas
,
B.
, and
Goda
,
T. J.
,
2021
, “
Constitutive Modelling of Rubbers: Mullins Effect, Residual Strain, Time-Temperature Dependence
,”
Int. J. Mech. Sci.
,
210
, p.
106735
.
28.
Salant
,
R. F.
,
Maser
,
N.
, and
Yang
,
B.
,
2007
, “
Numerical Model of a Reciprocating Hydraulic Rod Seal
,”
ASME J. Tribol.
,
129
(
1
), pp.
91
97
.
29.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Technol.
,
100
(
1
), pp.
12
17
.
30.
Patir
,
N.
, and
Cheng
,
H. S.
,
1979
, “
Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces
,”
ASME J. Lubr. Technol.
,
101
(
2
), pp.
220
229
.
31.
Roelands
,
C. J. A.
,
1966
, “
Correlational Aspects of the Viscosity-Temperature Pressure Relationship of Lubricating Oils
,”
Doctoral dissertation
,
Department of Civil Engineering and Geosciences, Delft University of Technology
,
Delft, The Netherlands
.
32.
Meng
,
X. H.
,
Wang
,
J.
, and
Nagayama
,
G.
,
2022
, “
Boundary Slip-Induced Temperature Rise and Film Thickness Reduction Under Sliding/Rolling Contact in Thermal Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
144
(
7
), p.
071602
.
33.
Stefani
,
F.
, and
Rebora
,
A.
,
2009
, “
Steadily Loaded Journal Bearings: Quasi-3D Mass–Energy-Conserving Analysis
,”
Tribol. Int.
,
42
(
3
), pp.
448
460
.
34.
Wang
,
B. Q.
,
Peng
,
X. D.
, and
Meng
,
X. K.
,
2019
, “
A Thermo-Elastohydrodynamic Lubrication Model for Hydraulic Rod O-Ring Seals Under Mixed Lubrication Conditions
,”
Tribol. Int.
,
129
, pp.
442
458
.
35.
Tachibana
,
F.
, and
Fukui
,
S.
,
1964
, “
Convective Heat Transfer of the Rotational and Axial Flow Between Two Concentric Cylinders
,”
Bull. JSME
,
7
(
26
), pp.
385
391
.
36.
Wang
,
B. Q.
,
Meng
,
X. K.
,
Peng
,
X. D.
, and
Chen
,
Y.
,
2021
, “
Experimental Investigations on the Effect of Rod Surface Roughness on Lubrication Characteristics of a Hydraulic O-Ring Seal
,”
Tribol. Int.
,
156
, p.
106791
.
37.
Meng
,
X. K.
, and
Khonsari
,
M. M.
,
2017
, “
On the Effect of Viscosity Wedge in Micro-Textured Parallel Surfaces
,”
Tribol. Int.
,
107
, pp.
116
124
.
38.
Cui
,
J. L.
,
Kaneta
,
M.
,
Yang
,
P.
, and
Yang
,
P. R.
,
2016
, “
The Relation Between Thermal Wedge and Thermal Boundary Conditions for the Load-Carrying Capacity of a Rectangular Pad and a Slider With Parallel Gaps
,”
ASME J. Tribol.
,
138
(
2
), p.
024502
.
39.
Huang
,
X. L.
,
Martinez-Vega
,
J.
, and
Malec
,
D.
,
2014
, “
Morphological Evolution of Polytetrafluoroethylene in Extreme Temperature Conditions for Aerospace Applications
,”
J. Appl. Polym. Sci.
,
131
(
3
), p.
39841
.
40.
Ebnesajjad
,
S.
,
2017
,
Applied Plastics Engineering Handbook (Second Edition)
,
Elsevier
,
New York
.
You do not currently have access to this content.