Abstract

As the demand for ultrahigh-speed bearings grows, hybrid gas-magnetic bearings (HGMBs) have emerged as a research focus due to the ability to integrate the merits of active magnetic bearings (AMBs) and gas bearings (GBs). However, HGMBs face challenges related to complex structure and manufacturing. This study emphasizes the critical role of radial clearance in HGMB design, as excessive clearance reduces GB load capacity and stability. In contrast, insufficient clearance increases the risk of rotor–stator contact and is prone to thermal runaway failure or bearing seizure. This work investigates the comprehensive performance of HGMBs with varying clearances. The results show that radial clearance significantly influences GB and HGMB load capacities, with a 30-μm clearance increasing GB capacity up to 16.8 times compared to 150 μm at 46 krpm. Increasing radial clearance also reduces total losses in AMB, GB, and HGMB, notably decreasing GB air friction loss by up to 80.1%. The AMB/HGMB total loss increases tremendously with rotor eccentricity, especially in larger radial clearances. In addition, higher clearances lead to increased instability and vibration, with GB being the most sensitive. HGMBs exhibit superior startup stability, while zero-bias HGMBs and AMBs face challenges with increasing radial clearance. These findings highlight the importance of considering radial clearance effects and provide valuable insights for HGMB design, promoting advancements in this technology and engineering applications.

References

1.
Liu
,
Q.
,
Zhang
,
S. P.
,
Li
,
Y. Y.
,
Lei
,
G.
, and
Wang
,
L.
,
2021
, “
Hybrid Gas-Magnetic Bearings: An Overview
,”
Int. J. Appl. Electromagn. Mech.
,
66
(
2
), pp.
313
338
.
2.
Zhang
,
H.
,
Cheng
,
M.
, and
Feng
,
K.
,
2023
, “
Effect of Equilibrium Position Offset on Rotordynamics of a Rigid Rotor Supported by Hybrid Foil Magnetic Bearings: Numerical and Experimental Investigations
,”
Mech. Syst. Signal Process.
,
205
, p.
110848
.
3.
Heshmat
,
H.
,
1999
, “
Operation of Foil Bearings Beyond the Bending Critical Mode
,”
ASME J. Tribol.
,
122
(
1
), pp.
192
198
.
4.
Maslen
,
E. H.
, and
Schweitzer
,
G.
,
2008
,
Magnetic Bearings: Theory, Design, and Application to Rotating Machinery
, 1 ed.,
Springer Berlin
,
Heidelberg
.
5.
Siva Srinivas
,
R.
,
Tiwari
,
R.
, and
Kannababu
,
C.
,
2018
, “
Application of Active Magnetic Bearings in Flexible Rotordynamic Systems—A State-of-the-Art Review
,”
Mech. Syst. Signal Process.
,
106
, pp.
537
572
.
6.
Liu
,
Q.
,
Wang
,
L.
,
Zhang
,
S.
,
Li
,
Y.
, and
Lei
,
G.
,
2021
, “
Effect of AMB Winding Configurations on Static and Dynamic Performances and Power Consumptions of the AMB-Rotor System
,”
Int. J. Appl. Electromagn. Mech.
,
66
(
1
), pp.
75
89
.
7.
Breńkacz
,
Ł
,
Witanowski
,
Ł
,
Drosińska-Komor
,
M.
, and
Szewczuk-Krypa
,
N.
,
2021
, “
Research and Applications of Active Bearings: A State-of-the-Art Review
,”
Mech. Syst. Signal Process.
,
151
, p.
107423
.
8.
Looser
,
A.
,
Tuysuz
,
A.
,
Zwyssig
,
C.
, and
Kolar
,
J. W.
,
2017
, “
Active Magnetic Damper for Ultrahigh-Speed Permanent-Magnet Machines With Gas Bearings
,”
IEEE Trans. Ind. Electron.
,
64
(
4
), pp.
2982
2991
.
9.
Zhang
,
H.
,
Cheng
,
M.
,
Zhou
,
X.
,
Feng
,
L.
, and
Feng
,
K.
,
2023
, “
Investigations on the Nonlinear Dynamic Characteristics of a Rotor Supported by Hybrid Foil Magnetic Bearings
,”
Nonlinear Dyn.
,
111
(
16
), pp.
14879
14899
.
10.
Mohawk Innovative Technology, Inc.
,
1998
, “
942 Pounds on a Film of Air!
,”
MiTi Developments
,
4
, pp.
1
2
.
11.
Amrhein
,
W.
,
Gruber
,
W.
,
Bauer
,
W.
, and
Reisinger
,
M.
,
2016
, “
Magnetic Levitation Systems for Cost-Sensitive Applications -Some Design Aspects
,”
IEEE Trans. Ind. Appl.
,
52
(
5
), pp.
3739
3752
.
12.
Liu
,
Q.
,
Wang
,
L.
, and
Feng
,
M.
,
2023
, “
Clearance Compatibility and Design Principle of the Single-Structured Hybrid Gas-Magnetic Bearing
,”
Ind. Lubr. Tribol.
,
75
(
10
), pp.
1219
1228
.
13.
Su
,
Y.
,
Gu
,
Y.
,
Keogh
,
P. S.
,
Yu
,
S.
, and
Ren
,
G.
,
2020
, “
Nonlinear Dynamic Simulation and Parametric Analysis of a Rotor-AMB-TDB System Experiencing Strong Base Shock Excitations
,”
Mech. Mach. Theory
,
155
, p.
104071
.
14.
Liu
,
Q.
,
Wang
,
L.
,
Zhang
,
S.
,
Wang
,
X.
,
Yu
,
C.
, and
Lei
,
G.
,
2020
, “
Quantitative Control of the Zero-Bias-Current Electromagnetic Bearings for Lower Power Consumption
,”
Int. J. Appl. Electromagn. Mech.
,
62
(
2
), pp.
221
242
.
15.
Knospe
,
C. R.
,
2004
, “
Active Magnetic Bearings for Machining Applications
,”
Control Eng. Pract.
,
15
(
3
), pp.
307
313
.
16.
Radil
,
K. C.
,
Howard
,
S. A.
, and
Dykas
,
B.
,
2002
, “
The Role of Radial Clearance on the Performance of Foil Air Bearings
,”
Tribol. Trans.
,
45
(
4
), pp.
485
490
.
17.
Wang
,
D.
,
Wang
,
N.
,
Ye
,
C.
, and
Chen
,
K.
,
2017
, “
Research on Analytical Bearing Capacity Model of Active Magnetic Bearings Based on Magnetic Saturation
,”
IET Electr. Power Appl.
,
11
(
9
), pp.
1548
1557
.
18.
Spece
,
H.
,
Fittro
,
R.
, and
Knospe
,
C.
,
2018
, “
Optimization of Axial Magnetic Bearing Actuators for Dynamic Performance
,”
Actuators
,
7
(
4
), p.
66
.
19.
Lai
,
T.
,
Chen
,
S.
,
Ma
,
B.
,
Zheng
,
Y.
, and
Hou
,
Y.
,
2014
, “
Effects of Bearing Clearance and Supporting Stiffness on Performances of Rotor-Bearing System With Multi-Decked Protuberant Gas Foil Journal Bearing
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
228
(
7
), pp.
780
788
.
20.
Sim
,
K.
,
Lee
,
Y.-B.
, and
Kim
,
T. H.
,
2013
, “
Effects of Mechanical Preload and Bearing Clearance on Rotordynamic Performance of Lobed Gas Foil Bearings for Oil-Free Turbochargers
,”
Tribol. Trans.
,
56
(
2
), pp.
224
235
.
21.
Smolík
,
L.
,
Hajžman
,
M.
, and
Byrtus
,
M.
,
2017
, “
Investigation of Bearing Clearance Effects in Dynamics of Turbochargers
,”
Int. J. Mech. Sci.
,
127
, pp.
62
72
.
22.
Wang
,
Y. F.
,
1999
,
Gas Lubricated Theory and Design Manual of Gas Bearings
,
China Machine Press
,
Beijing
.
23.
Bleuler
,
H.
,
1992
, “
A Survey of Magnetic Levitation and Magnetic Bearing Types
,”
JSME Int. J. Ser. 3, Vib., Control Eng., Eng. Industry
,
35
(
3
), pp.
335
342
.
24.
Heshmat
,
H.
,
Ming Chen
,
H.
, and
Walton
,
J. F.
, II
,
2000
, “
On the Performance of Hybrid Foil-Magnetic Bearings
,”
ASME J. Eng. Gas Turbines Power
,
122
(
1
), pp.
73
81
.
25.
Swanson
,
E. E.
,
Heshmat
,
H.
, and
Walton
,
J.
,
2002
, “
Performance of a Foil-Magnetic Hybrid Bearing
,”
ASME J. Eng. Gas Turbines Power
,
124
(
2
), pp.
375
382
.
26.
Heshmat
,
H.
,
Chen
,
H. M.
, and
Walton
,
J. F.
,
1998
, “Hybrid Foil-Magnetic Bearing,” U.S. 6353273B1.
27.
Pham
,
M. N.
, and
Ahn
,
H. J.
,
2014
, “
Experimental Optimization of a Hybrid Foil-Magnetic Bearing to Support a Flexible Rotor
,”
Mech. Syst. Signal Process.
,
46
(
2
), pp.
361
372
.
28.
Jeong
,
S.
, and
Lee
,
Y.
,
2016
, “
Effects of Eccentricity and Vibration Response on High-Speed Rigid Rotor Supported by Hybrid Foil-Magnetic Bearing
,”
Proc. Inst. Mech. Eng. Part C-J. Mech. Eng. Sci.
,
230
(
6
), pp.
994
1006
.
29.
Jeong
,
S.
, and
Lee
,
Y.
,
2017
, “
Vibration Control of High-Speed Rotor Supported by Hybrid Foil-Magnetic Bearing With Sudden Imbalance
,”
J. Vib. Control
,
23
(
8
), pp.
1296
1308
.
30.
Nadjafi
,
R. H.
, and
Pedro
,
S.
,
2000
, “Hybrid Foil/Magnetic Bearing,” U.S. 6135640.
31.
Foshage
,
G. K.
, and
Lovelace
,
E. C.
,
2006
, “Integrated Magnetic/Foil Bearing and Methods for Supporting A Shaft Journal Using the Same,” U.S. 0208589A1.
32.
Lee
,
Y.
,
Kim
,
C.
,
Kim
,
S.
, and
Kim
,
H.
,
2010
, “Airfoil-Magnetic Hybrid Bearing and a Control System Thereof,” U.S. 8772992.
33.
Sun
,
Y. H.
,
Tian
,
Y.
,
Xu
,
Y. F.
, and
Yu
,
L.
,
2010
, “Series Electromagnetic-Elastic Foil Combined Bearing,” CN101799044A.
34.
Liu
,
Q.
,
Wang
,
L.
,
Li
,
Y.
, and
Lei
,
G.
,
2021
, “
Single-Structured Hybrid Gas-Magnetic Bearing and its Rotordynamic Performance
,”
Nonlinear Dyn.
,
104
(
1
), pp.
333
348
.
35.
Yang
,
B.
,
Geng
,
H.
,
Sun
,
Y.
, and
Yu
,
L.
,
2016
, “
Dynamic Characteristics of Hybrid Foil-Magnetic Bearings (HFMBs) Concerning Eccentricity Effect
,”
Int. J. Appl. Electromagn. Mech.
,
52
(
1-2
), pp.
271
279
.
36.
Lyathakula
,
K. R.
,
Cesmeci
,
S.
,
Hassan
,
M. F.
,
Xu
,
H.
, and
Tang
,
J.
,
2022
, “
A Proof-of-Concept Study of a Novel Elasto-Hydrodynamic Seal for CO2
,”
ASME 2022 Power Conference
,
Pittsburgh, PA
,
July 18–19
, p. V001T12A003.
37.
Cesmeci
,
S.
,
Hassan
,
R.
,
Hassan
,
M. F.
,
Ejiogu
,
I.
,
DeMond
,
M.
, and
Xu
,
H.
,
2021
, “
An Innovative Elasto-Hydrodynamic Seal Concept for Supercritical CO2 Power Cycles
,”
ASME 2021 Power Conference
,
Virtual, Online
,
July 20–22
, p. V001T04A002.
38.
Lund
,
J. W.
,
1968
, “
Calculation of Stiffness and Damping Properties of Gas Bearings
,”
ASME J. Lubr. Technol.
,
90
(
4
), pp.
793
803
.
39.
Liu
,
Q.
,
Ge
,
R.
,
Wang
,
L.
,
Ren
,
T.
, and
Feng
,
M.
,
2024
, “
Single-Structured Zero-Bias Hybrid Gas-Magnetic Bearing and Its Rotordynamic Performance
,”
Int. J. Appl. Electromagn. Mech.
,
74
(
1
), pp.
79
99
.
You do not currently have access to this content.