Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In the current work, 16Cr-5Ni stainless martensitic cast steel was evaluated in cavitation and slurry erosion tests under different thermal aging treatments (TATs) using an ultrasonic vibratory cavitation apparatus and an in-house-designed jet slurry tribometer. The steel was homogenized at 1100 °C for 40 h and then thermal ageing was performed at 475 °C, 550 °C, and 625 °C for 4 h. The cavitation test results showed a lower wear-rate was obtained under TAT at 475 °C, followed by TAT at 550 °C, and a higher wear-rate was found under TAT at 625 °C. A good correlation was established between hardness and the maximum erosion rate in the cavitation results. In the slurry tests, the jet stream contained a fixed mass fraction of 1.25 wt% sand. The evaluated impingement angles were 45 deg and 90 deg, and better performance was obtained under TAT at 475 °C and TAT at 550 °C. The results for the thermal aging of 16Cr-5Ni were compared with those of traditional CA6NM (13Cr-4Ni) steel, which is widely used in the manufacturing of turbine runners. Under every condition evaluated, 16Cr-5Ni presented a cavitation erosion resistance value higher than that of CA6NM, and the slurry erosion resistance of both steels was very similar when 16Cr-5Ni under TAT at 475 °C or 550 °C was compared with CA6NM. Therefore, 16Cr-5Ni stainless martensitic cast steel could be another alternative to the promising results obtained for the manufacturing of turbine runners.

References

1.
Holmberg
,
K.
,
Kivikytö-Reponen
,
P.
,
Härkisaari
,
P.
,
Valtonen
,
K.
, and
Erdemir
,
A.
,
2017
, “
Global Energy Consumption Due to Friction and Wear in the Mining Industry
,”
Tribol. Int.
,
115
, pp.
116
139
.
2.
Javaheri
,
V.
,
Porter
,
D.
, and
Kuokkala
,
V.-T.
,
2018
, “
Slurry Erosion of Steel—Review of Tests, Mechanisms and Materials
,”
Wear
,
408–409
, pp.
248
273
.
3.
Niederau
,
H.
,
1982
, “
A New Low-Carbon 16Cr-5Ni Stainless Martensitic Cast Steel
,”
Proceedings of Stainless Steel Castings: A Symposium Sponsored by ASTM Committee A-1 on Steel, Stainless Steel, and Related Alloys
,
Bal Harbour, FL
,
Nov. 12–13
,
ASTM International
, p.
382
.
4.
Qin
,
B.
,
Wang
,
Z.
, and
Sun
,
Q.
,
2008
, “
Effect of Tempering Temperature on Properties of 00Cr16Ni5Mo Stainless Steel
,”
Mater. Charact.
,
59
(
8
), pp.
1096
1100
.
5.
Abdel-Karim
,
R.
,
Dawood
,
M. A.
,
Mahallawi
,
I. E.
, and
Koussy
,
M. E.
,
2004
, “
Effect of Thermal Aging on Pitting Corrosion Resistance of 16Cr–5Ni–1Mo Precipitation Hardening Stainless Steel
,”
Mater. Sci. Technol.
,
20
(
12
), pp.
1573
1577
.
6.
Al Dawood
,
M.
,
El Mahallawi
,
I.
,
Abd El Azim
,
M.
, and
El Koussy
,
M.
,
2004
, “
Thermal Aging of 16Cr–5Ni–1Mo Stainless Steel Part 1–Microstructural Analysis
,”
Mater. Sci. Technol.
,
20
(
3
), pp.
363
369
.
7.
Al Dawood
,
M.
,
El Mahallawi
,
I.
,
Abd El Azim
,
M.
, and
El Koussy
,
M.
,
2004
, “
Thermal Aging of 16Cr–5Ni–1Mo Stainless Steel Part 2–Mechanical Property Characterisation
,”
Mater. Sci. Technol.
,
20
(
3
), pp.
370
374
.
8.
Liu
,
W.
,
Zheng
,
Y.
,
Liu
,
C.
,
Yao
,
Z.
, and
Ke
,
W.
,
2003
, “
Cavitation Erosion Behavior of Cr–Mn–N Stainless Steels in Comparison With 0Cr13Ni5Mo Stainless Steel
,”
Wear
,
254
(
7
), pp.
713
722
.
9.
Santa
,
J.
,
Baena
,
J.
, and
Toro
,
A.
,
2007
, “
Slurry Erosion of Thermal Spray Coatings and Stainless Steels for Hydraulic Machinery
,”
Wear
,
263
(
1
), pp.
258
264
.
10.
Thapa
,
B.
,
Chaudhary
,
P.
,
Dahlhaug
,
O. G.
, and
Upadhyay
,
P.
,
2007
, “
Study of Combined Effect of Sand Erosion and Cavitation in Hydraulic Turbines
,”
Proceedings of the International Conference on Small Hydropower-Hydro Sri Lanka
,
Sri Lanka
,
Oct. 22–24
, p.
24
.
11.
Chauhan
,
A. K.
,
Goel
,
D.
, and
Prakash
,
S.
,
2009
, “
Solid Particle Erosion Behaviour of 13Cr–4Ni and 21Cr–4Ni–N Steels
,”
J. Alloys Compd.
,
467
(
1
), pp.
459
464
.
12.
Manisekaran
,
T.
,
Kamaraj
,
M.
,
Sharrif
,
S.
, and
Joshi
,
S.
,
2007
, “
Slurry Erosion Studies on Surface Modified 13Cr-4Ni Steels: Effect of Angle of Impingement and Particle Size
,”
J. Mater. Eng. Perform.
,
16
(
5
), pp.
567
572
.
13.
Santa
,
J.
,
Espitia
,
L.
,
Blanco
,
J.
,
Romo
,
S.
, and
Toro
,
A.
,
2009
, “
Slurry and Cavitation Erosion Resistance of Thermal Spray Coatings
,”
Wear
,
267
(
1
), pp.
160
167
.
14.
Espitia
,
L.
, and
Toro
,
A.
,
2010
, “
Cavitation Resistance, Microstructure and Surface Topography of Materials Used for Hydraulic Components
,”
Tribol. Int.
,
43
(
11
), pp.
2037
2045
.
15.
Teran
,
L. A.
,
Roa
,
C. V.
,
Muñoz-Cubillos
,
J.
,
Aponte
,
R. D.
,
Valdes
,
J.
,
Larrahondo
,
F.
,
Rodríguez
,
S. A.
, and
Coronado
,
J. J.
,
2016
, “
Failure Analysis of a Run-of-the-River Hydroelectric Power Plant
,”
Eng. Fail. Anal.
,
68
, pp.
87
100
.
16.
Correa
,
C.
,
García
,
G.
,
García
,
A.
,
Bejarano
,
W.
,
Guzmán
,
A.
, and
Toro
,
A.
,
2011
, “
Wear Mechanisms of Epoxy-Based Composite Coatings Submitted to Cavitation
,”
Wear
,
271
(
9
), pp.
2274
2279
.
17.
Santa
,
J.
,
Blanco
,
J.
,
Giraldo
,
J.
, and
Toro
,
A.
,
2011
, “
Cavitation Erosion of Martensitic and Austenitic Stainless Steel Welded Coatings
,”
Wear
,
271
(
9
), pp.
1445
1453
.
18.
Romo
,
S.
,
Santa
,
J.
,
Giraldo
,
J.
, and
Toro
,
A.
,
2012
, “
Cavitation and High-Velocity Slurry Erosion Resistance of Welded Stellite 6 Alloy
,”
Tribol. Int.
,
47
, pp.
16
24
.
19.
Basha
,
S. S.
,
Periasamy
,
V. M.
,
Kamaraj
,
M.
, and
Shariff
,
S. M.
,
2013
, “
Improvement of Slurry Erosion Wear Resistance of 16Cr-5Ni Martensite Stainless Steel by LSA and LTH
,”
J. Mater. Eng. Perform.
,
22
(
12
), pp.
3689
3698
.
20.
Espitia
,
L.
,
Varela
,
L.
,
Pinedo
,
C.
, and
Tschiptschin
,
A.
,
2013
, “
Cavitation Erosion Resistance of Low Temperature Plasma Nitrided Martensitic Stainless Steel
,”
Wear
,
301
(
1
), pp.
449
456
.
21.
Allenstein
,
A.
,
Lepienski
,
C.
,
Buschinelli
,
A.
, and
Brunatto
,
S.
,
2014
, “
Improvement of the Cavitation Erosion Resistance for Low-Temperature Plasma Nitrided Ca-6NM Martensitic Stainless Steel
,”
Wear
,
309
(
1
), pp.
159
165
.
22.
Basha
,
S. S.
,
Periasamy
,
V. M.
, and
Kamaraj
,
M.
,
2014
, “
Slurry Erosion Resistance of Laser-Modified 16Cr-5Ni Stainless Steel
,”
Int. J. ChemTech Res.
,
6
(
1
), pp.
691
704
.
23.
Kishor
,
B.
,
Chaudhari
,
G. P.
, and
Nath
,
S. K.
,
2018
, “
Slurry Erosion Behaviour of Thermomechanically Treated 16Cr5Ni Stainless Steel
,”
Tribol. Int.
,
119
, pp.
411
418
.
24.
International, A.
,
2016
, “
E8/E8M-16ae1-Standard Test Methods for Tension Testing of Metallic Materials
,” West Conshohocken, PA.
25.
Rietveld
,
H. M.
,
1969
, “
A Profile Refinement Method for Nuclear and Magnetic Structures
,”
J. Appl. Crystallogr.
,
2
(
2
), pp.
65
71
.
26.
Roa
,
C.
,
Valdes
,
J.
,
Larrahondo
,
F.
,
Rodríguez
,
S.
, and
Coronado
,
J.
,
2021
, “
Comparison of the Resistance to Cavitation Erosion and Slurry Erosion of Four Kinds of Surface Modification on 13-4 Ca6NM Hydro-Machinery Steel
,”
J. Mater. Eng. Perform.
,
30
(
10
), pp.
7195
7212
.
27.
Stachowiak
,
G.
, and
Batchelor
,
A. W.
,
2013
,
Engineering Tribology
,
Butterworth-Heinemann
,
Oxford, UK
.
28.
Clark
,
H. M.
, and
Hartwich
,
R. B.
,
2001
, “
A Re-Examination of the ‘Particle Size Effect’ in Slurry Erosion
,”
Wear
,
248
(
1
), pp.
147
161
.
29.
Zambrano
,
O. A.
,
Tufa
,
K. Y.
, and
Jiang
,
J.
,
2023
, “
Slurry Jet Erosion Resistance of VC-Containing Tool Steels: The Role of the Carbide Volume Fraction
,”
J. Mater. Eng. Perform.
,
32
(
24
), pp.
11347
11366
.
30.
Roa
,
C. V.
,
Muñoz
,
J.
,
Teran
,
L. A.
,
Valdes
,
J. A.
,
Rodríguez
,
S. A.
,
Coronado
,
J. J.
, and
Ladino
,
A.
,
2015
, “
Effect of Tribometer Configuration on the Analysis of Hydromachinery Wear Failure
,”
Wear
,
332–333
, pp.
1164
1175
.
31.
Huang
,
C.-Y.
,
Ni
,
H.-C.
, and
Yen
,
H.-W.
,
2020
, “
New Protocol for Orientation Reconstruction From Martensite to Austenite in Steels
,”
Materialia
,
9
, p.
100554
.
32.
Nolze
,
G.
,
2004
, “
Characterization of the FCC/BCC Orientation Relationship by EBSD Using Pole Figures and Variants
,”
Int. J. Mater. Res.
,
95
(
9
), pp.
744
755
.
33.
ASTM
,
2019
, “
E2627 Standard Practice for Determining Average Grain Size Using Electron Backscatter Diffraction (EBSD) in Fully Recrystallized Polycrystalline Materials
,” West Conshohocken, PA.
34.
Santos
,
L. L.
,
Cardoso
,
R. P.
, and
Brunatto
,
S. F.
,
2020
, “
Behavior of the Reversed Austenite in CA-6NM Martensitic Stainless Steel Under Cavitation
,”
Wear
,
454–455
, p.
203322
.
35.
dos Santos
,
J. F.
,
Garzón
,
C. M.
, and
Tschiptschin
,
A. P.
,
2004
, “
Improvement of the Cavitation Erosion Resistance of an AISI 304L Austenitic Stainless Steel by High Temperature Gas Nitriding
,”
Mater. Sci. Eng. A
,
382
(
1
), pp.
378
386
.
36.
Zhao
,
K.
,
Gu
,
C.
,
Shen
,
F.
, and
Lou
,
B.
,
1993
, “
Study on Mechanism of Combined Action of Abrasion and Cavitation Erosion on Some Engineering Steels
,”
Wear
,
162
, pp.
811
819
.
37.
Zambrano
,
O. A.
,
García
,
D. S.
,
Rodríguez
,
S. A.
, and
Coronado
,
J. J.
,
2018
, “
The Mild-Severe Wear Transition in Erosion Wear
,”
Tribol. Lett.
,
66
(
3
), p.
95
.
38.
Jiang
,
J. J.
,
Qian
,
W.
,
Chung
,
R. J.
,
Zambrano
,
O. A.
, and
Xie
,
Y.
,
2024
, “
Scouring Erosion Resistance of Metallic Materials With Composite Microstructures
,”
Wear
,
554–555
, p.
205459
.
You do not currently have access to this content.