Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In this study, the impact of a rigid ball on a substrate with lubricant in between is examined. A linear hardening model for the elastic/plastic substrate deformation is assumed. A power-law model is used to describe the lubricant rheology. Throughout the impact period, variations in the pressure distribution, the film thickness distribution, the velocity of a rigid ball, the impact load, the von Mises stress distribution, and the plastic strain distribution on the substrate are calculated. The special cases of ET = E in the present impact plasto-elastohydrodynamic lubrication (PEHL) results are in good agreement with previous impact elastohydrodynamic lubrication (EHL) results using a power-law model. The variation of central pressure over time in the PEHL model is flatter and lower compared to that in the EHL model. The significant difference shows that the plastic deformation mechanism should be considered in the simulation. The results indicate that as the flow index (n) increases, the central pressure and central film thickness increase, the pressure spike occurs earlier, and the rigid ball's rebounding velocity and maximum impact load decrease. Moreover, as the tangent modulus of the linear hardening model of the substrate increases, the rigid ball's rebounding velocity and the maximum impact load increase, and the substrate deformation and plastic strain decrease.

References

1.
Reynolds
,
O.
,
1886
, “
IV. On the Theory of Lubrication and Its Application to Mr. Beauchamp Tower’s Experiments, Including an Experimental Determination of the Viscosity of Olive Oil
,”
Philos. Trans. R. Soc. London
,
177
, pp.
157
234
.
2.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1977
,
Elasto-Hydrodynamic Lubrication
,
Prgamon
,
New York
.
3.
Dowson
,
D.
,
1995
, “
Elastohydrodynamic and Micro-Elastohydrodynamic Lubrication
,”
Wear
,
190
(
2
), pp.
125
138
.
4.
Jin
,
Z. M.
, and
Dowson
,
D.
,
2005
, “
Elastohydrodynamic Lubrication in Biological Systems
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
219
(
5
), pp.
367
380
.
5.
Nguyen
,
L. T. P.
, and
Li
,
W. L.
,
2024
, “
Impact Elastohydrodynamic Lubrication Analysis of Transversely Isotropic Materials in Point Contact
,”
ASME J. Tribol.
,
146
(
2
), p.
024102
.
6.
Habchi
,
W.
,
Eyheramendy
,
D.
,
Vergne
,
P.
, and
Morales-Espejel
,
G.
,
2008
, “
A Full-System Approach of the Elastohydrodynamic Line/Point Contact Problem
,”
ASME J. Tribol.
,
130
(
2
), p.
021501
.
7.
Habchi
,
W.
, and
Issa
,
J.
,
2017
, “
An Exact and General Model Order Reduction Technique for the Finite Element Solution of Elastohydrodynamic Lubrication Problems
,”
ASME J. Tribol.
,
139
(
5
), p.
051501
.
8.
Fryza
,
J.
,
Sperka
,
P.
,
Kaneta
,
M.
,
Krupka
,
I.
, and
Hartl
,
M.
,
2017
, “
Effects of Lubricant Rheology and Impact Velocity on EHL Film Thickness at Pure Squeeze Action
,”
Tribol. Int.
,
106
, pp.
1
9
.
9.
Prajapati
,
D. K.
,
Ahmad
,
D.
,
Katiyar
,
J. K.
,
Prakash
,
C.
, and
Ajaj
,
R. M.
,
2023
, “
A Numerical Study on the Impact of Lubricant Rheology and Surface Topography on Heavily Loaded Non-Conformal Contacts
,”
Surf. Topogr. Metrol. Prop.
,
11
(
3
), p.
035006
.
10.
Kumar
,
P.
, and
Khonsari
,
M. M.
,
2009
, “
On the Role of Lubricant Rheology and Piezo-Viscous Properties in Line and Point Contact EHL
,”
Tribol. Int.
,
42
(
11–12
), pp.
1522
1530
.
11.
Fang
,
J.
,
Wen
,
X.
,
Bai
,
P.
,
Li
,
X.
,
Chen
,
W.
,
Hou
,
X.
,
Wen
,
C.
,
Meng
,
Y.
,
Ma
,
L.
, and
Tian
,
Y.
,
2023
, “
Post-Impact Squeeze-out Behavior of Lubricants With Different Pressure-Dependent Rheological Properties
,”
Tribol. Int.
,
187
, p.
108695
.
12.
Christensen
,
H.
,
1970
, “
Elastohydrodynamic Theory of Spherical Bodies in Normal Approach
,”
ASME J. Tribol.
,
92
(
1
), pp.
145
153
.
13.
Yang
,
P.
, and
Wen
,
S.
,
1991
, “
Pure Squeeze Action in an Isothermal Elastohydrodynamic Lubricated Spherical Conjunction, Part 1: Theory and Dynamic Load Results
,”
Wear
,
142
(
1
), pp.
1
16
.
14.
Yang
,
P.
, and
Wen
,
S.
,
1991
, “
Pure Squeeze Action in an Isothermal Elastohydrodynamic Lubricated Spherical Conjunction, Part 2: Constant Velocity and Constant Load Results
,”
Wear
,
142
(
1
), pp.
17
30
.
15.
Chu
,
H. M.
,
Li
,
W. L.
,
Chang
,
Y. P.
, and
Huang
,
H. C.
,
2008
, “
Effects of Couple Stress on Elastohydrodynamic Lubrication at Impact Loading
,”
ASME J. Tribol.
,
130
(
1
), p.
011010
.
16.
Chu
,
L. M.
,
Lai
,
J. Y.
,
Chien
,
C. H.
, and
Li
,
W. L.
,
2010
, “
Effects of Surface Forces on Pure Squeeze Thin Film EHL Motion of Circular Contacts
,”
Tribol. Int.
,
43
(
3
), pp.
523
531
.
17.
Chu
,
L. M.
,
Yu
,
C. C.
,
Chen
,
Q. D.
, and
Li
,
W. L.
,
2015
, “
Elastohydrodynamic Lubrication Analysis of Pure Squeeze Motion on an Elastic Coating/Elastic Substrate System
,”
ASME J. Tribol.
,
137
(
1
), p.
011503
.
18.
Venner
,
C. H.
,
Wang
,
J.
, and
Lubrecht
,
A. A.
,
2016
, “
Central Film Thickness in EHL Point Contacts Under Pure Impact Revisited
,”
Tribol. Int.
,
100
, pp.
1
6
.
19.
Lubrecht
,
A. A.
,
Biboulet
,
N.
, and
Venner
,
C. H.
,
2018
, “
Boundary Layers: Unifying the Impact and Rolling EHL Point Contacts
,”
Tribol. Int.
,
126
, pp.
186
191
.
20.
Oliver
,
D. R.
,
1988
, “
Load Enhancement Effects Due to Polymer Thickening a Short Model Journal Bearings
,”
J. Non-Newton. Fluid Mech.
,
30
(
2–3
), pp.
185
196
.
21.
Spikes
,
H. A.
,
1994
, “
The Behavior of Lubricants in Contacts: Current Understanding and Future Possibilities
,”
Proc. Inst. Mech. Eng.
,
208
(
1
), pp.
3
15
.
22.
Elkouh
,
A. F.
,
Nigro
,
N. J.
, and
Liou
,
Y. S.
,
1982
, “
Non-Newtonian Squeeze Film Between Two Plane Annuli
,”
ASME J. Tribol.
,
104
(
2
), pp.
275
278
.
23.
Yang
,
P.
, and
Wen
,
S.
,
1990
, “
A Generalized Reynolds Equation for Non-Newtonian Thermal Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
112
(
4
), pp.
631
636
.
24.
Chu
,
H. M.
,
Li
,
W. L.
, and
Chen
,
M. D.
,
2006
, “
Elastohydrodynamic Lubrication of Circular Contacts at Pure Squeeze Motion With Non-Newtonian Lubricants
,”
Tribol. Int.
,
39
(
9
), pp.
897
905
.
25.
Chu
,
H.M.
,
Chen
,
J.L.
,
Hsu
,
H.C.
, and
Li
,
W.L.
,
2008
, “
Elastohydrodynamic Lubrication of Circular Contacts at Impact Loading With Generalized Newtonian Lubricants
,”
Tribol. Lett.
,
29
(
1
), pp.
1
9
.
26.
Chu
,
H. M.
,
Chang
,
Y. P.
, and
Li
,
W. L.
,
2007
, “
Rheological Characteristics for Thin Film Elastohydrodynamic Lubrication With Non-Newtonian Lubricants
,”
J. Mech.
,
23
(
4
), pp.
359
366
.
27.
Chu
,
L. M.
,
Lin
,
J. R.
,
Hsu
,
H. C.
, and
Chang
,
Y. P.
,
2013
, “
Effects of Surface Roughness and Flow Rheology on the EHL of Circular Contacts With Power Law Fluid
,”
J. Mar. Sci. Technol.
,
21
(
2
), pp.
175
181
.
28.
Chu
,
L. M.
,
Chang
,
Y. P.
, and
Hsu
,
H. C.
,
2019
, “
Effects of Non-Newtonian Lubricants and Elastic Coating on Transient Elastohydrodynamic Lubrication at Impact Squeeze Loading
,”
Adv. Mech. Eng.
,
11
(
7
), pp.
1
8
.
29.
Niu
,
R.
, and
Huang
,
P.
,
2006
, “
The Influences of Elastic-Plastic Deformation of Rough Surfaces on EHL for Line Contacts
,”
Lubr. Eng.
,
6
(
178
), pp.
20
23
.
30.
Ren
,
N.
,
Zhu
,
D.
,
Chen
,
W. W.
, and
Wang
,
Q. J.
,
2010
, “
Plasto-Elastohydrodynamic Lubrication (PEHL) in Point Contacts
,”
ASME J. Tribol.
,
132
(
3
), p.
031501
.
31.
Ren
,
N.
,
Zhu
,
D.
, and
Wang
,
Q. J.
,
2011
, “
Three-Dimensional Plasto-Elastohydrodynamic Lubrication (PEHL) for Surfaces With Irregularities
,”
ASME J. Tribol.
,
133
(
3
), p.
031502
.
32.
He
,
T.
,
Ren
,
N.
,
Zhu
,
D.
, and
Wang
,
J.
,
2014
, “
Plasto-Elastohydrodynamic Lubrication in Point Contacts for Surfaces With Three-Dimensional Sinusoidal Waviness and Real Machined Roughness
,”
ASME J. Tribol.
,
136
(
3
), p.
031504
.
33.
He
,
T.
,
Wang
,
J.
,
Wang
,
Z.
, and
Zhu
,
D.
,
2015
, “
Simulation of Plasto-Elastohydrodynamic Lubrication in Line Contacts of Infinite and Finite Length
,”
ASME J. Tribol.
,
137
(
4
), p.
041505
.
34.
He
,
T.
,
Zhu
,
D.
, and
Wang
,
J.
,
2016
, “
Simulation of Plasto-Elastohydrodynamic Lubrication in a Rolling Contact
,”
ASME J. Tribol.
,
138
(
3
), p.
031503
.
35.
Zhou
,
Y.
,
Zhu
,
C.
,
Liu
,
H.
, and
Song
,
H.
,
2019
, “
Investigation of Contact Performance of Case-Hardened Gears Under Plasto-Elastohydrodynamic Lubrication
,”
Tribol. Lett.
,
67
(
3
), pp.
1
15
.
36.
Zheng
,
Y.
,
Wang
,
C. Q.
,
Pu
,
C.
,
Gong
,
J. Y.
, and
Meng
,
F. M.
,
2021
, “
Plasto-Elastohydrodynamic Lubrication Performance of Greased Ellipsoid Contact
,”
Lubr. Sci.
,
33
(
4
), pp.
171
187
.
37.
Bai
,
X.
,
Dong
,
Q.
,
Zheng
,
H.
, and
Zhou
,
K.
,
2022
, “
Plasto- Elastohydrodynamic Lubrication of Heterogeneous Materials in Impact Motion
,”
Int. J. Mech. Sci.
,
236
, p.
107762
.
38.
Bird
,
R. B.
, and
Stewart
,
W. E.
,
1960
,
Transport Phenomena
,
Wiley
,
New York
.
39.
Bhattacharjee
,
R. C.
, and
Das
,
N. C.
,
1996
, “
Power Law Fluid Model Incorporated Into Elastohydrodynamic Lubricantion Theory of Line Contact
,”
Tribol. Int.
,
29
(
5
), pp.
405
413
.
40.
Roelands
,
C.
,
Vlugter
,
J.
, and
Waterman
,
H.
,
1963
, “
The Viscosity-Temperature-Pressure Relationship of Lubricating Lubricants and Its Correlation With Chemical Constitution
,”
ASME J. Basic Eng.
,
85
(
4
), pp.
601
607
.
41.
Williams
,
E.
,
1956
, “
Hooke's Law and the Concept of the Elastic Limit
,”
Ann. Sci.
,
12
(
1
), pp.
74
83
.
42.
Chen
,
Q. D.
,
Jao
,
H. C.
,
Chu
,
L. M.
, and
Li
,
W. L.
,
2016
, “
Effects of Anisotropic Slip on the Dlastohydrodynamic Lubrication of Circular Contacts
,”
ASME J. Tribol.
,
132
(
3
), p.
031501
.
43.
Bai
,
X.
,
2023
, “
Interfacial Mechanics Investigation of Transmission Components Under non-Newtonian Lubrication Conditions
,”
Ph.D. dissertation
,
Nanyang Technological University
,
Singapore
.
You do not currently have access to this content.