Abstract

In recent years, cold metal transfer (CMT)-based wire arc additive manufacturing (WAAM) has gained significant attention in the manufacturing sector, particularly for its ability to produce components with low thermal input and high deposition rates. This study investigated the tribological behavior of SS316L walls fabricated using CMT-based WAAM, employing a ball-on-plate linear reciprocating test with tungsten carbide (WC) counter body under varying thermal inputs and applied loads (15 N, 20 N, and 25 N). The tests were conducted for 10 min at a frequency of 15 Hz and a stroke length of 2 mm. Results indicate that the coefficient of friction (COF) increased slightly with applied loads, yielding an average COF of 0.22 across all loads. Wear-rate analysis revealed that both increased applied load and heat input led to a higher wear-rate, with the maximum wear-rate (3.39 × 10−3 mm3/m) occurring at high heat input and 25 N, while the minimum wear-rate (1.2 × 10−3 mm3/m) was observed at low heat input and 15 N. Vickers microhardness results demonstrated an inverse relationship between hardness and heat input, with hardness increasing by 11% as heat input decreased from high to low. FESEM analysis of wear tracks showed significant craters, abrasive grooves, delamination, surface cracks, and particle adhesion, identifying an abrasive-dominant wear mechanism with surface fatigue, partial adhesion, and oxidative wear. Wear debris analysis showed sharper angular particles and larger irregularly shaped flakes. X-ray diffraction (XRD) spectra confirmed δ-ferrite and γ-austenite phases pre- and postwear, with postwear analysis showing an α′-martensite peak, indicating phase transformation during wear.

References

1.
DebRoy
,
T.
,
Wei
,
H. L.
,
Zuback
,
J. S.
,
Mukherjee
,
T.
,
Elmer
,
J. W.
,
Milewski
,
J. O.
,
Beese
,
A. M.
,
Wilson-Heid
,
A.
,
De
,
A.
, and
Zhang
,
W.
,
2018
, “
Additive Manufacturing of Metallic Components—Process, Structure and Properties
,”
Prog. Mater. Sci.
,
92
, pp.
112
224
.
2.
Ding
,
D.
,
Pan
,
Z.
,
Cuiuri
,
D.
, and
Li
,
H.
,
2015
, “
Wire-Feed Additive Manufacturing of Metal Components: Technologies, Developments and Future Interests
,”
Int. J. Adv. Manuf. Technol.
,
81
(
1–4
), pp.
465
481
.
3.
Cooke
,
S.
,
Ahmadi
,
K.
,
Willerth
,
S.
, and
Herring
,
R.
,
2020
, “
Metal Additive Manufacturing: Technology, Metallurgy and Modelling
,”
J. Manuf. Process.
,
57
, pp.
978
1003
.
4.
Zuo
,
X.
,
Zhang
,
W.
,
Chen
,
Y.
,
Oliveira
,
J. P.
,
Zeng
,
Z.
,
Li
,
Y.
,
Luo
,
Z.
, and
Ao
,
S.
,
2022
, “
Wire-Based Directed Energy Deposition of NiTiTa Shape Memory Alloys: Microstructure, Phase Transformation, Electrochemistry, X-Ray Visibility and Mechanical Properties
,”
Addit. Manuf.
,
59
, p.
103115
.
5.
Mazzucato
,
F.
,
Tusacciu
,
S.
,
Lai
,
M.
,
Biamino
,
S.
,
Lombardi
,
M.
, and
Valente
,
A.
,
2017
, “
Monitoring Approach to Evaluate the Performances of a New Deposition Nozzle Solution for DED Systems
,”
Technologies
,
5
(
2
), p.
29
.
6.
Saboori
,
A.
,
Aversa
,
A.
,
Marchese
,
G.
,
Biamino
,
S.
,
Lombardi
,
M.
, and
Fino
,
P.
,
2020
, “
Microstructure and Mechanical Properties of AISI 316L Produced by Directed Energy Deposition-Based Additive Manufacturing: A Review
,”
Appl. Sci.
,
10
(
9
), p.
3310
.
7.
Hackenhaar
,
W.
,
Mazzaferro
,
J. A. E.
,
Montevecchi
,
F.
, and
Campatelli
,
G.
,
2020
, “
An Experimental-Numerical Study of Active Cooling in Wire Arc Additive Manufacturing
,”
J. Manuf. Process.
,
52
, pp.
58
65
.
8.
Wu
,
W.
,
Xu
,
W.
,
Xue
,
J.
, and
Yao
,
P.
,
2022
, “
Effect of Cooling and CMT Mode Process on Additive Manufacturing
,”
Mater. Manuf. Process.
,
37
(
11
), pp.
1298
1309
.
9.
Xin
,
J.
,
Wu
,
D.
,
Chen
,
H.
,
Wang
,
L.
,
Zhou
,
W.
,
Wu
,
K.
,
Zhang
,
Y.
,
Shen
,
C.
,
Hua
,
X.
, and
Li
,
F.
,
2023
, “
Effect of Droplet Transfer Mode on Composition Homogeneity of Twin-Wire Plasma Arc Additively Manufactured Titanium Aluminide
,”
Int. J. Adv. Manuf. Technol.
,
124
(
5-6
), pp.
1723
1734
.
10.
Yadav
,
A.
,
Srivastava
,
M.
,
Jain
,
P. K.
, and
Rathee
,
S.
,
2024
, “
Investigation of Bead Morphology and Mechanical Behaviour for Metal Inert Gas Welding-Based WAAM in Pulsed Mode Metal Transfer on 316LSi Stainless Steel
,”
J. Adhes. Sci. Technol.
,
38
(
5
), pp.
738
769
.
11.
Bölükbaşı
,
ÖS
,
Serindağ
,
T.
,
Gürol
,
U.
,
Günen
,
A.
, and
Çam
,
G.
,
2023
, “
Improving Oxidation Resistance of Wire Arc Additive Manufactured Inconel 625 Ni-Based Superalloy by Pack Aluminizing
,”
CIRP J. Manuf. Sci. Technol.
,
46
, pp.
89
97
.
12.
Dickens
,
P. M.
,
Pridham
,
M. S.
,
Cobb
,
R. C.
,
Gibson
,
I.
, and
Dixon
,
G.
,
1992
, “
Rapid Prototyping Using 3-D Welding
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 3–5
, pp.
280
290
.
13.
Chen
,
C.
,
Du
,
W.
,
Zhang
,
H.
, and
Zhao
,
X.
,
2023
, “
Improvement of Microstructure and Mechanical Properties of Stainless Steel TIG Based Wire Arc Additive Manufacturing by Using AC/DC mix Current Waveform
,”
J. Mater. Res. Technol.
,
23
, pp.
4355
4366
.
14.
Tian
,
Y.
,
Shen
,
J.
,
Hu
,
S.
,
Gou
,
J.
, and
Kannatey-Asibu
,
E.
,
2020
, “
Wire and Arc Additive Manufactured Ti–6Al–4V/Al–6.25Cu Dissimilar Alloys by CMT-Welding: Effect of Deposition Order on Reaction Layer
,”
Sci. Technol. Weld. Join.
,
25
(
1
), pp.
73
80
.
15.
Zhang
,
Z.
,
Shen
,
J.
,
Bi
,
J.
,
Hu
,
S.
,
Zhen
,
Y.
, and
Bu
,
X.
,
2023
, “
Microstructure and Mechanical Properties of Weaving Wire and Arc Additive Manufactured AZ91 Magnesium Alloy Based on Cold Metal Transfer Technique
,”
Materials (Basel)
,
16
(
11
), p.
4047
.
16.
Rodrigues
,
T. A.
,
Cipriano Farias
,
F. W.
,
Zhang
,
K.
,
Shamsolhodaei
,
A.
,
Shen
,
J.
,
Zhou
,
N.
,
Schell
,
N.
, et al
,
2022
, “
Wire and Arc Additive Manufacturing of 316L Stainless Steel/Inconel 625 Functionally Graded Material: Development and Characterization
,”
J. Mater. Res. Technol.
,
21
, pp.
237
251
.
17.
Motwani
,
A.
,
Kumar
,
A.
,
Puri
,
Y.
, and
Lautre
,
N. K.
,
2023
, “
Mechanical Characteristics and Microstructural Investigation of CMT Deposited Bimetallic SS316LSi-IN625 Thin Wall for WAAM
,”
Weld. World
,
67
(
4
), pp.
967
980
.
18.
D’Andrea
,
D.
,
2023
, “
Additive Manufacturing of AISI 316L Stainless Steel: A Review
,”
Metals (Basel)
,
13
(
8)
, p.
1370
. .
19.
Boillot
,
P.
, and
Peultier
,
J.
,
2014
, “
Use of Stainless Steels in the Industry: Recent and Future Developments
,”
Procedia Eng.
,
83
, pp.
309
321
.
20.
Renner
,
P.
,
Jha
,
S.
,
Chen
,
Y.
,
Raut
,
A.
,
Mehta
,
S. G.
, and
Liang
,
H.
,
2021
, “
A Review on Corrosion and Wear of Additively Manufactured Alloys
,”
ASME J. Tribol.
,
143
(
5
), p.
050802
.
21.
Basha
,
M. M.
, and
Sankar
,
M. R.
,
2023
, “
Experimental Tribological Study on Additive Manufactured Inconel 718 Features Against the Hard Carbide Counter Bodies
,”
ASME J. Tribol.
,
145
(
12), p.
121702
,
22.
Subba Rao
,
B.
,
Rao
,
T. B.
, and
Rama Karthik
,
M.
,
2024
, “
Effect of Direct Aging Heat Treatment on Microstructure and Mechanical Properties of Laser Powder Bed Fused Maraging Steel 300-Grade Alloy
,”
ASME J. Tribol.
,
146
(
11
), p.
111701
.
23.
Peruzzo
,
M.
,
Serafini
,
F. L.
,
Ordoñez
,
M. F. C.
,
Souza
,
R. M.
, and
Farias
,
M. C. M.
,
2019
, “
Reciprocating Sliding Wear of the Sintered 316L Stainless Steel With Boron Additions
,”
Wear
,
422–423
, pp.
108
118
.
24.
Mandal
,
A.
,
Tiwari
,
J. K.
,
AlMangour
,
B.
,
Sathish
,
N.
,
Kumar
,
S.
,
Kamaraj
,
M.
,
Ashiq
,
M.
, and
Srivastava
,
A. K.
,
2020
, “
Tribological Behavior of Graphene-Reinforced 316L Stainless-Steel Composite Prepared via Selective Laser Melting
,”
Tribol Int.
,
151
, p.
106525
.
25.
Farias
,
M. C. M.
,
Souza
,
R. M.
,
Sinatora
,
A.
, and
Tanaka
,
D. K.
,
2007
, “
The Influence of Applied Load, Sliding Velocity and Martensitic Transformation on the Unlubricated Sliding Wear of Austenitic Stainless Steels
,”
Wear
,
263
(
1–6
), pp.
773
781
.
26.
Parvaresh
,
B.
,
Salehan
,
R.
, and
Miresmaeili
,
R.
,
2021
, “
Investigating Isotropy of Mechanical and Wear Properties in As-Deposited and Inter-Layer Cold Worked Specimens Manufactured by Wire Arc Additive Manufacturing
,”
Met. Mater. Int.
,
27
(
1
), pp.
92
105
.
27.
Duraisamy
,
R.
,
Kumar
,
S. M.
,
Kannan
,
A. R.
,
Shanmugam
,
N. S.
,
Sankaranarayanasamy
,
K.
, and
Ramesh
,
M. R.
,
2020
, “
Tribological Performance of Wire Arc Additive Manufactured 347 Austenitic Stainless Steel Under Unlubricated Conditions at Elevated Temperatures
,”
J. Manuf. Process.
,
56
, pp.
306
321
.
28.
Haden
,
C. V.
,
Zeng
,
G.
,
Carter
,
F. M.
,
Ruhl
,
C.
,
Krick
,
B. A.
, and
Harlow
,
D. G.
,
2017
, “
Wire and Arc Additive Manufactured Steel: Tensile and Wear Properties
,”
Addit. Manuf.
,
16
, pp.
115
123
.
29.
Kumar
,
V.
,
Dwivedi
,
S.
,
Mandal
,
A.
, and
Dixit
,
A. R.
,
2024
, “
Experimental Investigations on the Microstructural Evolution and Their Influence on Mechanical, Tribological and Corrosion Performance of Wire-arc Additive Manufactured SS316L Structure
,”
Mater. Today Commun.
,
38
, p.
107673
.
30.
Gürol
,
U.
,
Kocaman
,
E.
,
Dilibal
,
S.
, and
Koçak
,
M.
,
2023
, “
A Comparative Study on the Microstructure, Mechanical Properties, Wear and Corrosion Behaviors of SS 316 Austenitic Stainless Steels Manufactured by Casting and WAAM Technologies
,”
CIRP J. Manuf. Sci. Technol.
,
47
, pp.
215
227
.
31.
Koli
,
Y.
,
Aravindan
,
S.
, and
Rao
,
P. V.
,
2023
, “
Wear Characteristics of Wire-Arc Additive Manufactured SS308L
,”
ASME J. Tribol.
,
145
(
3), p.
031706
.
32.
BS EN 1011-1
,
1998
, Welding - Recommendations for Welding of metallic Materials – Part 1: General Guidance for Arc Welding. 1–10. Technical Standard Published by the British Standards Institution (BSI) and the European Committee for Standardization (CEN).
33.
ASTM G133-05
,
2016
, Technical Standard for Assessing Wear Using a Reciprocating Ball-on-Flat Sliding Test.
34.
Mishra
,
V.
,
Yuvaraj
,
N.
, and
Vipin
,
2024
, “
Tribological Behaviour of Austenitic Stainless Steel-Clad Surface Over Low Carbon Steel Produced by Cold Metal Transfer Welding Process
,”
Trans. Indian Inst. Met.
,
77
(
6
), pp.
1639
1650
.
35.
Wang
,
Q. J.
, and
Chung
,
Y.
,
2013
,
Encyclopedia of Tribology
,
Springer US
, pp.
1304
1306
.
36.
Akıncıoğlu
,
G.
,
Şirin
,
E.
, and
Aslan
,
E.
,
2023
, “
Tribological Characteristics of ABS Structures With Different Infill Densities Tested by Pin-on-Disc
,”
Proc. Inst. Mech. Eng. Part J.: J. Eng. Tribol.
,
237
(
5
), pp.
1224
1234
.
37.
Vora
,
J.
,
Parmar
,
H.
,
Chaudhari
,
R.
,
Khanna
,
S.
,
Doshi
,
M.
, and
Patel
,
V.
,
2022
, “
Experimental Investigations on Mechanical Properties of Multi-Layered Structure Fabricated by GMAW-Based WAAM of SS316L
,”
J. Mater. Res. Technol.
,
20
, pp.
2748
2757
.
38.
Islam
,
M. A.
, and
Farhat
,
Z.
,
2010
, “
Wear of A380M Aluminum Alloy Under Reciprocating Load
,”
J. Mater. Eng. Perform.
,
19
(
8
), pp.
1208
1213
.
39.
Wang
,
Q.
,
Zhang
,
P. Z.
,
Wei
,
D. B.
,
Chen
,
X. H.
,
Wang
,
R. N.
,
Wang
,
H. Y.
, and
Feng
,
K. T.
,
2013
, “
Microstructure and Sliding Wear Behavior of Pure Titanium Surface Modified by Double-Glow Plasma Surface Alloying With Nb
,”
Mater. Des.
,
52
, pp.
265
273
.
40.
Rai
,
V. K.
,
Srivastava
,
R.
,
Nath
,
S. K.
, and
Ray
,
S.
,
1999
, “
Wear in Cast Titanium Carbide Reinforced Ferrous Composites Under Dry Sliding
,”
Wear
,
231
(
2
), pp.
265
271
.
41.
Straffelini
,
G.
,
Molinari
,
A.
, and
Trabucco
,
D.
,
2002
, “
Sliding Wear of Austenitic and Austenitic-Ferritic Stainless Steels
,”
Metall. Mater. Trans. A
,
33
(
3
), pp.
613
624
.
42.
Liu
,
R.
, and
Li
,
D. Y.
,
2000
, “
Experimental Studies on Tribological Properties of Pseudoelastic TiNi Alloy With Comparison to Stainless Steel 304
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
,
31
(
11
), pp.
2773
2783
.
43.
Hurricks
,
P. L.
,
1973
, “
Some Metallurgical Factors Controlling the Adhesive and Abrasive Wear Resistance of Steels. A Review
,”
Wear
,
26
(
3
), pp.
285
304
.
44.
Sanjeev
,
K. C.
,
Nezhadfar
,
P. D.
,
Phillips
,
C.
,
Kennedy
,
M. S.
,
Shamsaei
,
N.
, and
Jackson
,
R. L.
,
2019
, “
Tribological Behavior of 17–4 PH Stainless Steel Fabricated by Traditional Manufacturing and Laser-Based Additive Manufacturing Methods
,”
Wear
,
440-441
, p.
203100
.
45.
Sasikumar
,
C.
, and
Oyyaravelu
,
R.
,
2024
, “
Mechanical Properties and Microstructure of SS 316 L Created by WAAM Based on GMAW
,”
Mater. Today Commun.
,
38
, p.
107807
.
46.
Marshall
,
P.
,
1984
, “Austenitic Stainless Steels: Microstructure and Mechanical Properties.”
47.
Hanief
,
M.
, and
Wani
,
M. F.
,
2016
, “
Effect of Surface Roughness on Wear Rate During Running-in of En31-Steel: Model and Experimental Validation
,”
Mater. Lett.
,
176
, pp.
91
93
.
48.
Svahn
,
F.
,
Kassman-Rudolphi
,
Å
, and
Wallén
,
E.
,
2003
, “
The Influence of Surface Roughness on Friction and Wear of Machine Element Coatings
,”
Wear
,
254
(
11
), pp.
1092
1098
.
49.
Briscoe
,
B.
,
1992
, “
Tribology—Friction and Wear of Engineering Materials
,”
Tribol. Int.
,
25
(
5
), p.
357
.
You do not currently have access to this content.