A new empirical prediction method for design and off-design secondary losses in turbines has been developed. The empirical prediction method is based on a new loss breakdown scheme, and as discussed in Part I, the secondary loss definition in this new scheme differs from that in the conventional one. Therefore, a new secondary loss correlation for design and off-design incidence values has been developed. It is based on a database of linear cascade measurements from the present authors’ experiments as well as cases available in the open literature. The new correlation is based on correlating parameters that are similar to those used in existing correlations. This paper also focuses on providing physical insights into the relationship between these parameters and the loss generation mechanisms in the endwall region. To demonstrate the improvements achieved with the new prediction method, the measured cascade data are compared to predictions from the most recent design and off-design secondary loss correlations (Kacker, S. C. and Okapuu, U., 1982, ASME J. Turbomach., 104, pp. 111-119, Moustapha, S. H., Kacker, S. C., and Tremblay, B., 1990, ASME J. Turbomach., 112, pp. 267–276) using the conventional loss breakdown. The Kacker and Okapuu correlation is based on rotating-rig and engine data, and a scaling factor is needed to make their correlation predictions apply to the linear cascade environment. This suggests that there are additional and significant losses in the engine that are not present in the linear cascade environment.

1.
Ainley
,
D. G.
, and
Mathieson
,
G. C. R.
, 1951, “
A Method of Performance Estimation for Axial Flow Turbines
,” British ARC, R&M 2974.
2.
Dunham
,
J.
, and
Came
,
P. M.
, 1970, “
Improvements to the Ainley-Mathieson Method of Turbine Performance Prediction
,”
ASME J. Eng. Power
0022-0825,
92
, pp.
252
256
.
3.
Kacker
,
S. C.
, and
Okapuu
,
U.
, 1982, “
A Mean Line Prediction Method for Axial Flow Turbine Efficiency
,”
ASME J. Turbomach.
0889-504X,
104
, pp.
111
119
.
4.
Craig
,
H. R. M.
, and
Cox
,
H. J. A.
, 1971, “
Performance Estimation of Axial Flow Turbines
,” in
Proceedings Institution of Mechanical Engineers 1970–71
, Vol.
185
, no.
32/71
, pp.
407
424
.
5.
Traupel
,
W.
, 1977,
Thermische Turbomaschinen
,
Springer-Verlag
,
Berlin
.
6.
Dunham
,
J.
, 1970, “
A Review of Cascade Data on Secondary Losses in Turbines
,”
J. Mech. Eng. Sci.
0022-2542,
12
, pp.
48
59
.
7.
Sieverding
,
C. H.
, 1985, “
Axial Turbine Performance Prediction Methods
,”
Thermodynamics and Fluid Mechanics of Turbomachinery
, Vol.
1
, No.
97A
of NATO ASI, Series E, pp.
737
784
.
8.
Moustapha
,
S. H.
,
Kacker
,
S. C.
, and
Tremblay
,
B.
, 1990, “
An Improved Incidence Losses Prediction Method for Turbine Airfoils
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
267
276
.
9.
Mukhtarov
,
M. K.
, and
Krichakin
,
V. I.
, 1969, “
Procedure of Estimating Flow Section Losses in Axial Flow Turbines when Calculating their Characteristics
,”
Teploenergetika
,
16
(
7
), pp.
76
79
.
10.
Benner
,
M. W.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
, 1997, “
Influence of Leading-Edge Geometry on Profile Losses in Turbines at Off-Design Incidence: Experimental Results and an Improved Correlation
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
193
200
.
11.
Benner
,
M. W.
, 2003, “
The Influence of Leading-Edge Geometry on Profile and Secondary Losses in Turbine Cascades
,” Ph.D. thesis, Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada.
12.
Benner
,
M. W.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
, 2004, “
Measurements of Secondary Flows Downstream of a Turbine Cascade at Off-Design Incidence
,” ASME Paper No. GT2004–53786.
13.
Graziani
,
R. A.
,
Blair
,
M. F.
,
Taylor
,
J. R.
, and
Mayle
,
R. E.
, 1980, “
An Experimental Study of Endwall and Airfoil Surface Heat Transfer in a Large Scale Turbine Blade Cascade
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
257
267
.
14.
Moore
,
J.
, and
Ransmayr
,
A.
, 1984, “
Flow in a Turbine Cascade—Part 1: Losses and Leading-Edge Effects
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
106
, pp.
400
408
.
15.
Mobarak
,
A.
,
Khalafallah
,
M. G.
,
Osman
,
A. M.
, and
Heikal
,
H. A.
, 1988, “
Experimental Investigation of Secondary Flow and Mixing Downstream of Straight Cascades
,”
ASME J. Turbomach.
0889-504X,
110
, pp.
497
503
.
16.
Yamamoto
,
A.
, and
Nouse
,
H.
, 1988, “
Effects of Incidence on Three-Dimensional Flows in a Linear Turbine Cascade
,”
ASME J. Turbomach.
0889-504X,
110
, pp.
486
496
.
17.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
, 1977, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Power
0022-0825,
99
, pp.
21
28
.
18.
Moore
,
J.
, and
Adhye
,
R. Y.
, 1985, “
Secondary Flows and Losses Downstream of a Turbine Cascade
,”
ASME J. Turbomach.
0889-504X,
107
, pp.
961
968
.
19.
Jilek
,
J.
, 1986, “
An Experimental Investigation of the Three-Dimensional Flow Within Large Scale Turbine Cascades
,” ASME Paper No. 86-GT-170.
20.
Hodson
,
H. P.
, and
Dominy
,
R. G.
, 1987a, “
Three-Dimensional Flow in a Low-Pressure Turbine Cascade at its Design Condition
,”
ASME J. Turbomach.
0889-504X,
109
, pp.
177
185
.
21.
Hodson
,
H. P.
, and
Dominy
,
R. G.
, 1987b, “
The Off-Design Performance of a Low-Pressure Turbine Cascade
,”
ASME J. Turbomach.
0889-504X,
109
, pp.
201
210
.
22.
Harrison
,
S.
, 1990, “
Secondary Loss Generation in a Linear Cascade of High-Turning Turbine Blades
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
618
624
.
23.
Goobie
,
S. M.
,
Moustapha
,
S. H.
, and
Sjolander
,
S. A.
, 1989, “
An Experimental Investigation of the Effect of Incidence on the Two-Dimensional Performance of an Axial Turbine Cascade
,”
Proceedings, Ninth International Symposium on Air Breathing Engines
, pp.
197
204
.
24.
Weiss
,
A. P.
, and
Fottner
,
L.
, 1995, “
The Influence of Load Distribution on Secondary Flow in Turbine Cascades
,”
ASME J. Turbomach.
0889-504X,
117
, pp.
133
141
.
25.
Benner
,
M. W.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
, 2004, “
The Influence of Leading-Edge Geometry on Secondary Losses in a Turbine Cascade at the Design Incidence
,”
ASME J. Turbomach.
0889-504X,
126
, pp.
277
287
.
26.
Marchal
,
P.
, 1980, “
Etude des ecoulements secondaires en grille d’aubes de detente
,” Ph.D. thesis, Universit Libre de Bruxelles, Brussels, Belgium.
27.
Sieverding
,
C. H.
, 1985, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Turbomach.
0889-504X,
107
, pp.
249
257
.
28.
Wolf
,
H.
, 1961, “
Die Randverluste in geraden Schaufelgittern
,”
Wiss. Z. Tech. Univ. Dresden
0043-6925,
10
, pp.
353
364
.
29.
Perdichizzi
,
A.
, and
Dossena
,
V.
, 1993, “
Incidence Angle and Pitch-Chord Effects on Secondary Flows Downstream of a Turbine Cascade
,”
ASME J. Turbomach.
0889-504X,
115
, pp.
383
391
.
30.
Denton
,
J. D.
, 1993, “
Loss Mechanisms in Turbomachinery
,”
ASME J. Turbomach.
0889-504X,
115
, pp.
621
656
.
31.
Marchal
,
P.
, and
Sieverding
,
C. H.
, 1977, “
Secondary Flows Within Turbomachinery Bladings
,”
Secondary Flows in Turbomachines
, AGARD-CP-214, Paper No. 11, pp.
1
19
.
32.
Chen
,
L. D.
, and
Dixon
,
S. L.
, 1986, “
Growth of Secondary Flow Losses Downstream of a Turbine Blade Cascade
,”
ASME J. Turbomach.
0889-504X,
108
, pp.
270
275
.
33.
Sharma
,
O. P.
, and
Butler
,
T. L.
, 1987, “
Predictions of Endwall Losses and Secondary Flows in Axial Turbine Cascades
,”
ASME J. Turbomach.
0889-504X,
109
, pp.
229
236
.
34.
Chan
,
J. K. K.
,
Yaras
,
M. I.
, and
Sjolander
,
S. A.
, 1994, “
Interaction between Inlet Boundary Layer, Tip-Leakage and Secondary Flows in a Low-Speed Turbine Cascade
,” ASME Paper No. 94-GT-250.
35.
Came
,
P. M.
, 1973, “
Secondary Loss Measurements in a Cascade of Turbine Blades
,”
The Institution of Mechanical Engineering
, Paper C33/73, pp.
75
83
.
36.
Sauer
,
H.
, and
Wolf
,
H.
, 1994, “
The Influence of the Inlet Boundary Layers on the Secondary Losses of Turbine Stages
,”
Technology Requirements for Small Gas Turbines
, AGARD-CP-537, Paper No. 28, pp.
1
6
.
37.
Hawthorne
,
W. R.
, 1954, “
The Secondary Flow about Struts and Airfoils
,”
J. Aeronaut. Sci.
0095-9812,
21
, pp.
588
608
and 648.
38.
Hultsch
,
M.
, and
Sauer
,
H.
, 1979, “
Sekundarstromungen in Beschauflungen axialer Turbomaschinen
,”
Maschinenbautechnik
,
28
, pp.
32
37
.
39.
McLean
,
C.
,
Camci
,
C.
, and
Glezer
,
B.
, 2001, “
Mainstream Aerodynamic Effects Due to Wheelspace Coolant Injection in a High-Pressure Turbine Stage— Part I: Aerodynamic Measurements in the Stationary Frame
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
687
696
.
40.
Atkins
,
M. J.
, 1987, “
Secondary Losses and End-Wall Profiling in a Turbine Cascade
,”
The Institution of Mechanical Engineering
, Paper No. C255/87, pp.
29
42
.
41.
Rogo
,
C.
, 1968, “
Experimental Aspect Ratio and Tip Clearance Investigation on Small Turbines
,” SAE Paper No. 680448.
42.
Okapuu
,
U.
, 1974, “
Some Results from Tests on a High Work Axial Gas Generator Turbine
,” ASME Paper No. 74-GT-81.
43.
Perdichizzi
,
A.
, 1990, “
Mach Number Effects on Secondary Flow Development Downstream of a Turbine Cascade
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
643
651
.
44.
DeCecco
,
S.
, 1995, “
Behavior of Tip-Leakage Flows at Large Clearances
,” Master’s thesis, Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada.
45.
Gregory-Smith
,
D. G.
,
Graves
,
C. P.
, and
Walsh
,
J. A.
, 1988, “
Growth of Secondary Losses and Vorticity in an Axial Turbine Cascade
,”
ASME J. Turbomach.
0889-504X,
110
, pp.
1
8
.
46.
Yan
,
J.
,
Gregory-Smith
,
D. G.
, and
Walker
,
P. J.
, 1999, “
Secondary Flow Reduction in A Nozzle Guide Vane Cascade by Non-Axisymmetric End-wall Profiling
,” ASME Paper No. 99-GT-339.
47.
Kopper
,
F. C.
,
Milano
,
R.
, and
Vanco
,
M.
, 1981, “
An Experimental Investigation of Endwall Profiling in a Turbine Vane Cascade
,”
AIAA J.
0001-1452,
19
, pp.
1033
1040
.
48.
Yamamoto
,
A.
, 1987a, “
Production and Development of Secondary Flows and Losses in Two Types of Straight Turbine Cascades—Part 1: A Stator Case
,”
ASME J. Turbomach.
0889-504X,
109
, pp.
186
193
.
49.
Yamamoto
,
A.
, 1987b, “
Production and Development of Secondary Flows and Losses in Two Types of Straight Turbine Cascades—Part I: A Rotor Case
,”
ASME J. Turbomach.
0889-504X,
109
, pp.
194
200
.
You do not currently have access to this content.