A feature-based jet model has been proposed for use in three-dimensional (3D) computational fluid dynamics (CFD) prediction of turbine blade film cooling. The goal of the model is to be able to perform computationally efficient flow prediction and optimization of film-cooled turbine blades. The model reproduces in the near-hole region the macroflow features of a coolant jet within a Reynolds-averaged Navier-Stokes framework. Numerical predictions of the 3D flow through a linear transonic film-cooled turbine cascade are carried out with the model, with a low computational overhead. Different cooling holes arrangements are computed, and the prediction accuracy is evaluated versus experimental data. It is shown that the present model provides a reasonably good prediction of the adiabatic film-cooling effectiveness and Nusselt number around the blade. A numerical analysis of the interaction of coolant jets issuing from different rows of holes on the blade pressure side is carried out. It is shown that the upward radial migration of the flow due to the passage secondary flow structure has an impact on the spreading of the coolant and the film-cooling effectiveness on the blade surface. Based on this result, a new arrangement of the cooling holes for the present case is proposed that leads to a better spanwise covering of the coolant on the blade pressure side surface.

1.
Bergeles
,
G.
,
Gosman
,
A. D.
, and
Launder
,
B. E.
, 1981, “
The Prediction of Three-Dimensional Discrete-Hole Cooling Processes—Part 2
,”
ASME J. Heat Transfer
0022-1481,
103
, pp.
141
145
.
2.
Demuren
,
A. O.
,
Rodi
,
W.
, and
Schönung
,
B.
, 1986, “
Systematic Study of Film Cooling With a Three-Dimensional Calculation Procedure
,”
ASME J. Turbomach.
0889-504X,
108
(
3
), pp.
124
130
.
3.
Lakehal
,
D.
, 2002, “
Near-Wall Modeling of Turbulent Convective Heat Transport in Film Cooling of Turbine Blades With the Aid of Direct Numerical Simulation Data
,”
ASME J. Turbomach.
0889-504X,
124
(
3
), pp.
485
498
.
4.
Leylek
,
J. H.
, and
Zerkle
,
R. D.
, 1994, “
Discrete-Jet Film Cooling: A Comparison of Computational Results With Experiments
,”
ASME J. Turbomach.
0889-504X,
116
(
3
), pp.
358
368
.
5.
Walters
,
D. K.
, and
Leylek
,
J. H.
, 2000, “
A Detailed Analysis of Film-Cooling Physics—Part I: Streamwise Injection With Cylindrical Holes
,”
ASME J. Turbomach.
0889-504X,
122
(
1
), pp.
102
112
.
6.
Morton
,
B. R.
, and
Ibbetson
,
A.
, 1996, “
Jets Deflected in a Crossflow
,”
Exp. Therm. Fluid Sci.
0894-1777,
12
, pp.
112
133
.
7.
Garg
,
V. K.
, and
Abhari
,
R. S.
, 1997, “
Comparison of Predicted and Experimental Nusselt Number for a Film-Cooled Rotating Blade
,”
Int. J. Heat Fluid Flow
0142-727X,
18
, pp.
452
460
.
8.
Garg
,
V. K.
, and
Gaugler
,
R. E.
, 1997, “
Effect of Velocity and Temperature Distribution at the Hole Exit on Film Cooling of Turbine Blades
,”
ASME J. Turbomach.
0889-504X,
119
(
2
), pp.
343
445
.
9.
Heidmann
,
J. D.
,
Rigby
,
D. L.
, and
Ameri
,
A. A.
, 2000, “
A Three-Dimensional Coupled Internal/External Simulation of a Film-Cooled Turbine Vane
,”
ASME J. Turbomach.
0889-504X,
122
(
2
), pp.
348
359
.
10.
Crawford
,
M. E.
,
Kays
,
W. M.
, and
Moffat
,
R. J.
, 1976, “
Heat Transfer to a Full Coverage Film-Cooled Surface With 30° Slant-Hole Injection
,” NASA Contractor Report No. CR-2786.
11.
Schönung
,
B.
, and
Rodi
,
W.
, 1987, “
Predictions of Film Cooling by a Row of Holes With a Two-Dimensional Boundary-Layer Procedure
,”
ASME J. Turbomach.
0889-504X,
109
(
4
), pp.
579
587
.
12.
Kulisa
,
P.
,
Leboeuf
,
F.
, and
Perrin
,
G.
, 1992, “
Computation of a Wall Boundary Layer With Discrete Jet Injections
,”
ASME J. Turbomach.
0889-504X,
114
(
4
), pp.
756
764
.
13.
Tafti
,
D. K.
, and
Yavuzkurt
,
S.
, 1990, “
Prediction of Heat Transfer Characteristics for Discrete Hole Film Cooling for Turbine Blade Applications
,”
ASME J. Turbomach.
0889-504X,
112
(
3
), pp.
504
511
.
14.
Abhari
,
R. S.
, 1996, “
Impact of Rotor-Stator Interaction on Turbine Blade Film Cooling
,”
ASME J. Turbomach.
0889-504X,
118
(
1
), pp.
123
133
.
15.
Forest
,
A. E.
,
White
,
A. J.
,
Lai
,
C. C.
,
Guo
,
S. M.
,
Oldfield
,
M. L. J.
, and
Lock
,
G. D.
, 2004, “
Experimentally Aided Development of a Turbine Heat Transfer Prediction Method
,”
Int. J. Heat Fluid Flow
0142-727X,
25
, pp.
606
617
.
16.
Burdet
,
A.
,
Abhari
,
R. S.
, and
Rose
,
M. G.
, 2005, “
Modeling of Film Cooling—Part II: Model for Use in 3D CFD
,” ASME Paper No. GT2005-68780.
17.
Burdet
,
A.
, and
Abhari
,
R. S.
, 2006, “
A Computationally Efficient Film Cooling Jet Model Using the Implicit Immerse Boundary Method
,”
Comput. Fluids
0045-7930, submitted.
18.
Bernsdorf
,
S.
,
Rose
,
M. G.
, and
Abhari
,
R. S.
, 2006, “
Modeling of Film Cooling—Part I: Experimental Study of Flow Structure
,”
ASME J. Turbomach.
0889-504X,
128
(
1
), pp.
141
149
.
19.
Moussa
,
Z. M.
,
Trischka
,
J. W.
, and
Eskani
,
S.
, 1977, “
The Near Field in the Mixing of a Round Jet With a Cross Stream
,”
J. Fluid Mech.
0022-1120,
80
(
1
), pp.
49
80
.
20.
Burdet
,
A.
, 2005, “
A Computationally Efficient Feature-Based Jet Model for Film-Cooling Flows Prediction
,” Ph.D. thesis No. 16163, ETH-Zürich, Switzerland.
21.
Majumdar
,
S.
,
Iaccarino
,
G.
, and
Durbin
,
P.
, 2001, “
RANS Solver With Adaptive Structured Boundary Non-Conforming Grids
,”
CTR Annual Research Briefs
, pp.
353
366
.
22.
Abhari
,
R. S.
, and
Epstein
,
A. H.
, 1994, “
An Experimental Study of Film Cooling in a Rotating Transonic Turbine
,”
ASME J. Turbomach.
0889-504X,
116
(
1
), pp.
63
70
.
23.
Schultz
,
D.
,
Jones
,
T. V.
,
Oldfield
,
M. L. G.
, and
Daniels
,
L. C.
, 1977, “
A New Transcient Cascade Facility for the Measurement of Heat Transfer Rates
,”
High Temperature Problems in Gas Turbine Engines
, AGARD Conf. Proc. Vol.
229
.
24.
Ashworth
,
D. A.
, 1987, “
Unsteady Aerodynamics and Heat Transfer in a Transonic Turbine Stage
,” Ph.D. thesis, Osney Lab., St. John’s College, University of Oxford, England.
25.
Rigby
,
M. J.
,
Johnson
,
A. B.
, and
Oldfield
,
M. L. G.
, 1990, “
Gas Turbine Rotor Blade Film Cooling With and Without Simulated NGV Shock Waves and Wakes
,” ASME Paper No. 90-GT-78.
26.
Ni
,
R. H.
, 1981, “
A Multiple Grid Scheme for Solving the Euler Equations
,”
AIAA J.
0001-1452,
20
(
11
), pp.
1565
1571
.
27.
Hyams
,
D. G.
, and
Leylek
,
J. H.
, 2000, “
A Detailed Analysis of Film Cooling Physics—Part III: Streamwise Injection With Shaped Hole
,”
ASME J. Turbomach.
0889-504X,
122
(
1
), pp.
122
132
.
28.
Garg
,
V. K.
, 1999, “
Heat Transfer on a Film-Cooled Rotating Blade Using Different Turbulence Model
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
789
802
.
29.
Medic
,
G.
, and
Durbin
,
P.
, 2002, “
Toward Improved Film Cooling Prediction
,”
ASME J. Turbomach.
0889-504X,
124
(
2
), pp.
193
199
.
30.
Sellers
,
J. P.
, 1963, “
Gaseous Film Cooling With Multiple Injection Stations
,”
AIAA J.
0001-1452,
1
, pp.
2154
2156
.
You do not currently have access to this content.