The turbulent flow inside a low-speed centrifugal compressor at design condition is investigated using large-eddy simulation (LES) comprising of up to 26×106 computational volume cells. Unlike in the past, the current study’s special emphasis is placed on the turbulence field evolution inside the impeller. LES predictions suggest that the Boussinesq hypothesis does not seem to be valid, especially near the exit of the impeller where the blade unloading takes place. Reynolds stress variations show a tendency toward an “axisymmetric expansion” type of turbulence after the impeller exit for which the subgrid-scale stress contribution shows a monotonic decrease. Probability density function analysis for the leakage flow show that instantaneous velocities in the wake region are less intermittent as compared with those in the jet. Time spectra analysis display also another feature that the energy cascade proceeds at a higher rate and lasts longer in the wake region than in the tip jet region.

1.
Dean
,
R. C.
, Jr.
, and
Senoo
,
Y.
, 1960, “
Rotating Wakes in Vaneless Diffusers
,”
ASME J. Basic Eng.
0021-9223,
82
, pp.
563
574
.
2.
Eckardt
,
D.
, 1975, “
Instantaneous Measurements in Jet-Wake Discharge Flow of a Centrifugal Compressor Impeller
,”
ASME J. Eng. Power
0022-0825,
97
(
3
), pp.
337
346
.
3.
Hah
,
C.
, and
Krain
,
H.
, 1990, “
Secondary Flows and Vortex Motion in a High-Efficiency Backswept Impeller at Design and Off-Design Conditions
,”
ASME J. Turbomach.
0889-504X,
112
(
1
), pp.
7
13
.
4.
Hathaway
,
M. D.
,
Chriss
,
R. M.
,
Wood
,
J. R.
, and
Strazisar
,
A. J.
, 1993, “
Experimental and Computational Investigation of the NASA Low-Speed Centrifugal Compressor Flow Field
,”
ASME J. Turbomach.
0889-504X,
115
, pp.
527
541
.
5.
Zhang
,
M.
,
Pomfret
,
M. J.
, and
Wong
,
C. M.
, 1996, “
Three-Dimensional Viscous Flow Simulation in a Backswept Centrifugal Impeller at the Design Point
,”
Comput. Fluids
0045-7930,
25
(
5
), pp.
497
507
.
6.
Byskov
,
R. K.
,
Jacobsen
,
C. B.
, and
Pedersen
,
N.
, 2003, “
Flow in a Centrifugal Pump Impeller at Design and Off-Design Conditions—Part II: Large Eddy Simulations
,”
ASME J. Fluids Eng.
0098-2202,
125
(
1
), pp.
73
83
.
7.
Kato
,
C.
,
Yamade
,
Y.
,
Wang
,
H.
,
Miyazawa
,
M.
,
Takaishi
,
T.
,
Yoshimura
,
S.
, and
Takano
,
Y.
, 2007, “
Numerical Prediction of Sound Generated From Flows With a Low Mach Number
,”
Comput. Fluids
0045-7930,
36
, pp.
53
68
.
8.
Nicoud
,
F.
, and
Ducros
,
F.
, 1999, “
Subgrid-Scale Stress Modelling Based on the Square of Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
1386-6184,
62
, pp.
183
200
.
9.
Smagorinsky
,
J.
, 1963, “
General Circulation Experiments With Primitive Equations. I. The Basic Experiment
,”
Mon. Weather Rev.
0027-0644,
91
, pp.
99
164
.
10.
Fluent Inc.
, 2001, FLUENT 6.2 User Guide, Lebanon, NH.
11.
Moore
,
J.
, and
Moore
,
J. G.
, 1990, “
A Prediction of 3-D Viscous Flow and Performance of the NASA Low-Speed Centrifugal Compressor
,” ASME Paper No. 90-GT-234.
12.
Krain
,
H.
and
Hoffman
,
W.
, 1989, “
Verification of an Impeller Design by Laser Measurements and 3D-Viscous Flow Calculations
,” ASME Paper No. 89-GT-159.
13.
Krain
,
H.
, and
Hoffman
,
W.
, 1990, “
Centrifugal Impeller Geometry and Its Influence on Secondary Flows
,”
AGARD Secondary Flows in Turbomachines
.
14.
Guleren
,
K. M.
, 1990, “
Large-Eddy Simulation of Wall-Bounded Flows Subjected to Curvature and Rotation
,” Ph.D. thesis, The University of Manchester, UK; http://www.cumhuriyet.edu.tr/melihguleren/PhDthesis.pdfhttp://www.cumhuriyet.edu.tr/melihguleren/PhDthesis.pdf.
15.
Luo
,
J. Y.
,
Issa
,
R. I.
, and
Gosman
,
A. D.
, 1994, “
Prediction of Impeller-Induced Flows in Mixing Vessels Using Multiple Frames of Reference
,”
Inst. Chem. Eng. Symp. Ser.
0307-0492,
136
, pp.
549
556
.
16.
Sergent
,
E.
, 2002, “
Vers une methodologie de couplage entre la Simulation des Grandes Echelles et les modeles statistiques
,” Ph.D. thesis, L’Ecole Centrale de Lyon, Lyon, France.
You do not currently have access to this content.