The adjoint method for blade design optimization will be described in this two-part paper. The main objective is to develop the capability of carrying out aerodynamic blading shape design optimization in a multistage turbomachinery environment. To this end, an adjoint mixing-plane treatment has been proposed. In the first part, the numerical elements pertinent to the present approach will be described. Attention is paid to the exactly opposite propagation of the adjoint characteristics against the physical flow characteristics, providing a simple and consistent guidance in the adjoint method development and applications. The adjoint mixing-plane treatment is formulated to have the two fundamental features of its counterpart in the physical flow domain: conservation and nonreflectiveness across the interface. The adjoint solver is verified by comparing gradient results with a direct finite difference method and through a 2D inverse design. The adjoint mixing-plane treatment is verified by comparing gradient results against those by the finite difference method for a 2D compressor stage. The redesign of the 2D compressor stage further demonstrates the validity of the adjoint mixing-plane treatment and the benefit of using it in a multi-bladerow environment.

1.
Horlock
,
J. H.
, and
Denton
,
J. D.
, 2005, “
A Review of Some Early Design Practice Using Computational Fluid Dynamics and a Current Perspective
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
5
13
.
2.
de Vito
,
L.
,
Van den Braembussche
,
R. A.
, and
Deconinck
,
H.
, 2003, “
A Novel Two-Dimensional Viscous Inverse Design Method for Turbomachinery Blading
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
310
316
.
3.
van Rooij
,
M. P. C.
,
Dang
,
T. Q.
, and
Larosiliere
,
L. M.
, 2007, “
Improving Aerodynamic Matching of Axial Compressor Blading Using a Three-Dimensional Multistage Inverse Design Method
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
108
118
.
4.
Büche
,
D.
,
Guidati
,
G.
, and
Stoll
,
P.
, 2003, “
Automated Design Optimization of Compressor Blades for Stationary, Large Scale Turbomachinery
,” ASME Paper No. GT2003-38421.
5.
Oyama
,
A.
, and
Liou
,
M. S.
, 2004, “
Transonic Axial-Flow Blade Optimization: Evolutionary Algorithms/Three-Dimensional Navier-Stokes Solver
,”
J. Propul. Power
0748-4658,
20
(
4
), pp.
612
619
.
6.
Keskin
,
A.
,
Dutta
,
A. K.
, and
Bestle
,
D.
, 2006, “
Modern Compressor Aerodynamic Blading Process Using Multi-Objective Optimization
,” ASME Paper No. GT2006-90206.
7.
Yi
,
W.
,
Huang
,
H.
, and
Han
,
W.
, 2006, “
Design Optimization of Transonic Compressor Rotor Using CFD and Genetic Algorithm
,” ASME Paper No. GT2006-90155.
8.
Lian
,
Y.
, and
Liou
,
M. S.
, 2005, “
Multi-Objective Optimization of Transonic Compressor Blade Using Evolutionary Algorithm
,”
J. Propul. Power
0748-4658,
21
(
6
), pp.
979
987
.
9.
Jameson
,
A.
, 1988, “
Aerodynamic Design Via Control Theory
,”
J. Sci. Comput.
0885-7474,
3
(
3
), pp.
233
260
.
10.
Nadarajah
,
S. K.
, and
Jameson
,
A.
, 2000, “
A Comparison of the Continuous and Discrete Adjoint Approach to Automatic Aerodynamic Optimization
,” AIAA Paper No. 00-0667.
11.
Duta
,
M. C.
,
Shahpar
,
S.
, and
Giles
,
M. B.
, 2007, “
Turbomachinery Design Optimization Using Automatic Differentiated Adjoint Code
,” ASME Paper No. GT2007-28329.
12.
Thomas
,
J. P.
,
Hall
,
K. C.
, and
Dowell
,
E. H.
, 2003, “
A Discrete Adjoint Approach for Modelling Unsteady Aerodynamic Design Sensitivities
,” AIAA Paper No. 03-0041.
13.
Giles
,
M. B.
, and
Pierce
,
N. A.
, 2000, “
An Introduction to the Adjoint Approach to Design
,”
Flow, Turbul. Combust.
1386-6184,
65
(
3/4
), pp.
393
415
.
14.
Jameson
,
A.
, 2003, “
Aerodynamic Shape Optimization Using the Adjoint Method
,”
Lectures at the Von Karman Institute
, Brussels.
15.
Reuther
,
J.
,
Jameson
,
A.
,
Farmer
,
J.
,
Martinelli
,
L.
, and
Saunders
,
D.
, 1996, “
Aerodynamic Shape Optimization of Complex Aircraft Configurations via an Adjoint Formulation
,” AIAA Paper No. 96-0094.
16.
Kim
,
H. J.
, and
Nakahashi
,
K.
, 2005, “
Discrete Adjoint Method for Unstructured Navier-Stokes Solver
,” AIAA Paper No. 05-449.
17.
Nielsen
,
E. J.
, and
Anderson
,
W. K.
, 1999, “
Aerodynamic Design Optimization on Unstructured Meshes Using the Navier-Stokes Equations
,”
AIAA J.
,
37
(
11
), pp.
1411
1419
. 0001-1452
18.
Nadarajah
,
S. K.
, and
Jameson
,
A.
, 2002, “
Optimal Control of Unsteady Flows Using a Time Accurate Method
,” AIAA Paper No. 02-5436.
19.
Nadarajah
,
S. K.
, and
Jameson
,
A.
, 2006, “
Optimum Shape Design for Unsteady Three Dimensional Viscous Flows Using a Nonlinear Frequency Domain Method
,” AIAA Paper No. 06-3455.
20.
Arens
,
K.
,
Rentrop
,
P.
,
Stoll
,
S. O.
, and
Wever
,
U.
, 2005, “
An Adjoint Approach to Optimal Design of Turbine Blades
,”
Appl. Numer. Math.
,
53
, pp.
93
105
. 0168-9274
21.
Li
,
Y.
,
Yang
,
D.
, and
Feng
,
Z.
, 2006, “
Inverse Problem in Aerodynamic Shape Design of Turbomachinery Blades
,” ASME Paper No. GT2006-91135.
22.
Yang
,
S.
,
Wu
,
H.
,
Liu
,
F.
, and
Tsai
,
H.
, 2003, “
Aerodynamic Design of Cascades by Using an Adjoint Equation Method
,” AIAA Paper No. 03-1068.
23.
Wu
,
H.
,
Yang
,
S.
, and
Liu
,
F.
, 2003, “
Comparison of Three Geometric Representation of Airfoils for Aerodynamic Optimization
,” AIAA Paper No. 2003-4095.
24.
Wu
,
H.
,
Liu
,
F.
, and
Tsai
,
H.
, 2005, “
Aerodynamic Design of Turbine Blades Using an Adjoint Equation Method
,” AIAA Paper No. 05-1006.
25.
Papadimitriou
,
D. I.
, and
Giannakoglou
,
K. C.
, 2006, “
Compressor Blade Optimization Using a Continuous Adjoint Formulation
,” ASME Paper No. GT2006-90466.
26.
Corral
,
R.
, and
Gisbert
,
F.
, 2006, “
Profiled End-Wall Design Using an Adjoint Navier-Stokes Solver
,” ASME Paper No. GT2006-90650.
27.
Florea
,
R.
, and
Hall
,
K. C.
, 2001, “
Sensitivity Analysis of Unsteady Inviscid Flow Through Turbomachinery Cascades
,”
AIAA J.
,
39
(
6
), pp.
1047
1056
. 0001-1452
28.
Duta
,
M. C.
,
Giles
,
M. B.
, and
Campobasso
,
M. S.
, 2002, “
The Harmonic Adjoint Approach to Unsteady Turbomachinery Design
,”
Int. J. Numer. Methods Fluids
0271-2091,
40
, pp.
323
332
.
29.
Denton
,
J. D.
, 1992, “
The Calculation of Three-Dimensional Viscous Flow Through Multistage Turbomachines
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
18
26
.
30.
He
,
L.
, and
Denton
,
J. D.
, 1994, “
Three-Dimensional Time-Marching Inviscid and Viscous Solutions for Unsteady Flows Around Vibrating Blades
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
469
476
.
31.
He
,
L.
,
Chen
,
T.
,
Wells
,
R. G.
,
Li
,
Y. S.
, and
Ning
,
W.
, 2002, “
Analysis of Rotor-Rotor and Stator-Stator Interferences in Multi-Stage Turbomachines
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
564
571
.
32.
He
,
L.
, and
Ning
,
W.
, 1998, “
An Efficient Approach for Analysis of Unsteady Viscous Flows in Turbomachines
,”
AIAA J.
,
36
(
11
), pp.
2005
2012
. 0001-1452
33.
Moffatt
,
S.
,
Ning
,
W.
,
Li
,
Y. S.
,
Wells
,
R. G.
, and
He
,
L.
, 2005, “
Blade Forced Response Prediction for Industrial Gas Turbines
,”
J. Propul. Power
,
21
(
4
), pp.
707
714
. 0001-1452
34.
Saxer
,
A. P.
, 1992, “
A Numerical Analysis of 3D Inviscid Stator/Rotor Interactions Using Non-Reflecting Boundary Conditions
,” Gas Turbine Laboratory, Massachusetts Institute of Technology, Technical Report.
35.
Vatsa
,
V. N.
, 2000, “
Computation of Sensitivity Derivatives of Navier-Stokes Equations Using Complex Variables
,”
Adv. Eng. Software
0965-9978,
31
(
8–9
), pp.
655
659
.
36.
Giles
,
M. B.
, and
Pierce
,
N. A.
, 1998, “
On the Properties of Solutions of the Adjoint Euler Equations
,”
Sixth ICFD Conference on Numerical Methods for Fluid Dynamics
, Oxford, UK.
37.
Dunker
,
R.
,
Rechter
,
H.
,
Starken
,
H.
, and
Weyer
,
H.
, 1984, “
Redesign and Performance Analysis of a Transonic Axial Compressor Stator and Equivalent Plane Cascades With Subsonic Controlled Diffusion Blades
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
106
, pp.
279
287
.
38.
Wang
,
D. X.
,
He
,
L.
,
Li
,
Y. S.
, and
Wells
,
R. G.
, 2010, “
Adjoint Aerodynamic Design Optimization for Blades in Multistage Turbomachines—Part II: Validation and Application
,”
ASME J. Turbomach.
0889-504X
132
(
2
), p.
021012
.
You do not currently have access to this content.