Endwall heat transfer measurements for a radially rotating rectangular pin-fin channel with the width-to-height ratio (aspect ratio) of 8 are performed at the parametric conditions of 5000Re20,000, 0Ro1.4, and 0.1Δρ/ρ0.21. Centerline heat transfer levels along the leading and trailing endwalls of the rotating pin-fin channel are, respectively, raised to 1.77–3.72 and 3.06–5.2 times of the Dittus–Boelter values. No previous attempt has examined the heat transfer performances for the pin-fin channel at such high rotation numbers. A selection of experimental data illustrates the individual and interactive Re, Ro, and buoyancy number (Bu) effects on heat transfer. Spanwise heat transfer variations between two adjoining pin rows are detected with the averaged Nusselt numbers (Nu) determined. A set of empirical equations that calculates Nu values over leading and trailing endwalls in the developed flow region is derived to correlate all the heat transfer data generated by this study and permits the evaluation of interactive and individual effects of Re, Ro, and Bu on Nu. With the aid of the Nu correlations derived, the operating conditions with the worst heat transfer scenarios for this rotating pin-fin channel are identified.

1.
Chyu
,
M. K.
, and
Natarajan
,
V.
, 1996, “
Heat Transfer on the Base Surface of Three-Dimensional Protruding Elements
,”
Int. J. Heat Mass Transfer
0017-9310,
39
, pp.
2925
2935
.
2.
Won
,
S. Y.
,
Mahmood
,
G. I.
, and
Ligrani
,
P. M.
, 2004, “
Spatially-Resolved Heat Transfer and Flow Structure in a Rectangular Channel With Pin Fins
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
1731
1743
.
3.
Van Fossen
,
G. J.
, 1982, “
Heat-Transfer Coefficients for Staggered Arrays of Short Pin-Fins
,”
ASME J. Eng. Power
0022-0825,
104
, pp.
268
274
.
4.
Chyu
,
M. K.
,
Hsing
,
Y. C.
,
Shih
,
T. I.-P.
, and
Natarajan
,
V.
, 1999, “
Heat Transfer Contributions of Pins and Endwall in Pin-Fin Arrays: Effects of Thermal Boundary Condition Modeling
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
257
263
.
5.
Metzger
,
D. E.
,
Berry
,
R. A.
, and
Bronson
,
J. P.
, 1982, “
Developing Heat Transfer in Rectangular Ducts With Staggered Arrays of Short Pin Fins
,”
ASME J. Heat Transfer
0022-1481,
104
, pp.
700
706
.
6.
Simoneau
,
R. J.
, and
Van Fossen
,
G. J.
, 1984, “
Effects of Location in an Array on Heat Transfer to a Short Cylinder in Cross Flow
,”
ASME J. Heat Transfer
0022-1481,
106
, pp.
42
48
.
7.
Chyu
,
M. K.
, 1990, “
Heat Transfer and Pressure Drop for Short Pin-Fin Arrays With Pin-Endwall Fillet
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
926
932
.
8.
Mezger
,
D. E.
,
Fan
,
C. D.
, and
Haley
,
S. W.
, 1984, “
Effects of Pin Shape and Array Orientation on Heat Transfer and Pressure Loss in Pin Arrays
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
106
, pp.
252
257
.
9.
Sahiti
,
N.
,
Lemouedda
,
A.
,
Stojkovic
,
D.
,
Durst
,
F.
, and
Franz
,
E.
, 2006, “
Performance Comparison of Pin Fin in-Duct Flow Arrays With Various Pin Cross-Sections
,”
Appl. Therm. Eng.
1359-4311,
26
, pp.
1176
1192
.
10.
Sparrow
,
E. M.
,
Ramsey
,
J. W.
, and
Altemani
,
C. A. C.
, 1980, “
Experiments on in-Line Pin Fin Arrays and Performance Comparisons With Staggered Array
,”
ASME J. Heat Transfer
0022-1481,
102
, pp.
44
50
.
11.
Jubran
,
B. A.
,
Hamdan
,
M. A.
, and
Abdualh
,
R. M.
, 1993, “
Enhanced Heat Transfer, Missing Pin and Optimization for Cylindrical Pin Fin Arrays
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
576
583
.
12.
Natarajan
,
V.
, and
Chyu
,
M. K.
, 1994, “
Effect of Flow Angle-of-Attack on the Local Heat/Mass Transfer From a Wall-Mounted Cube
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
552
560
.
13.
Chyu
,
M. K.
,
Oluyede
,
E. O.
, and
Moon
,
H. -K.
, 2007, “
Heat Transfer on Convective Surfaces With Pin-Fins Mounted in Inclined Angles
,” ASME Paper No. GT2007-28138.
14.
Sahiti
,
N.
,
Durst
,
F.
, and
Geremia
,
P.
, 2007, “
Selection and Optimization of Pin Cross-Sections for Electronics Cooling
,”
Appl. Therm. Eng.
1359-4311,
27
, pp.
111
119
.
15.
Willett
,
F. T.
, and
Bergles
,
A. E.
, 2002, “
Heat Transfer in Rotating Narrow Rectangular Pin-Fin Ducts
,”
Exp. Therm. Fluid Sci.
0894-1777,
25
, pp.
573
582
.
16.
Kristoffersen
,
R.
, and
Anderson
,
H. I.
, 1993, “
Direct Simulations of Low-Reynolds-Number Turbulent Flow in a Rotating Channel
,”
J. Fluid Mech.
0022-1120,
256
, pp.
163
197
.
17.
Lezius
,
D. K.
, and
Johnston
,
J. P.
, 1976, “
Roll-Cell Instabilities in Rotating Laminar and Turbulent Channel Flows
,”
J. Fluid Mech.
0022-1120,
77
, pp.
153
175
.
18.
Murata
,
A.
, and
Mochizuki
,
S.
, 2001, “
Effect of Centrifugal Buoyancy on Turbulent Heat Transfer in an Orthogonally Rotating Square Duct With Transverse or Angled Rib Turbulators
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
2739
2750
.
19.
Iskakov
,
K. M.
, and
Trushin
,
V. A.
, 1985, “
The Effect of Rotation on Heat Transfer in the Radial Cooling Channels of Turbine Blades
,”
Teploenergetika (Moscow, Russ. Fed.)
0040-3636,
32
, pp.
52
55
.
20.
Harasgama
,
S. P.
, and
Morris
,
W. D.
, 1988, “
The Influence of Rotation on the Heat Transfer Characteristics of Circular, Triangular and Square-Sectioned Coolant Passages of Gas Turbine Rotor Blade
,”
ASME J. Turbomach.
0889-504X,
110
, pp.
44
50
.
21.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Hajek
,
T. J.
, 1992, “
Heat Transfer in Rotating Passages With Smooth Walls and Radial Outward Flow
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
847
857
.
22.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
, 1994, “
Heat Transfer in Rotating Serpentine Passages With Trips Skewed to the Flow
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
113
123
.
23.
Parsons
,
J. A.
,
Han
,
J. C.
, and
Zhang
,
Y. M.
, 1994, “
Wall Heating Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel With 90° Rib Turbulators
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
1411
1420
.
24.
Chang
,
S. W.
, and
Morris
,
W. D.
, 1998, “
A Comparative Study of Heat Transfer Between Rotating Circular Smooth-Walled and Square Rib-Roughened Ducts With Cooling Application for Gas Turbine Rotor Blades
,”
JSME Int. J., Ser. B
1340-8054,
41
, pp.
302
315
.
25.
Chang
,
S. W.
, and
Morris
,
W. D.
, 2003, “
Heat Transfer in a Radially Rotating Square Duct Fitted With in-Line Transverse Ribs
,”
Int. J. Therm. Sci.
1290-0729,
42
, pp.
267
282
.
26.
Griffith
,
T. S.
,
AI-Hadhrami
,
L.
, and
Han
,
J. -C.
, 2003, “
Heat Transfer in Rotating Rectangular Cooling Channels (AR=4) With Dimples
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
555
563
.
27.
Chang
,
S. W.
,
Yang
,
T. L.
, and
Wang
,
W. J.
, 2006, “
Heat Transfer in a Rotating Twin-Pass Trapezoidal-Sectioned Passage Roughened by Skewed Ribs on Two Opposite Walls
,”
Heat Transfer Eng.
0145-7632,
27
, pp.
63
79
.
28.
Chang
,
S. W.
,
Liou
,
T. M.
,
Yeh
,
W. H.
, and
Hung
,
J. H.
, 2007, “
Heat Transfer in a Rotating Square-Sectioned Duct With Two Opposite Walls Roughened by 45 Degree Staggered Ribs at High Rotation Numbers
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
188
199
.
29.
Chang
,
S. W.
,
Liou
,
T. M.
,
Chiou
,
S. F.
, and
Chang
,
S. F.
, 2008, “
Heat Transfer in High-Speed Rotating Trapezoidal Duct With Rib-Roughened Surfaces and Air Bleeds From the Wall on the Apical Side
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
061702
.
30.
Kim
,
J. H.
,
Simon
,
T. W.
, and
Viskanta
,
R.
, eds., 1993, “
Journal of Heat Transfer Policy on Reporting Uncertainties in Experimental Measurements and Results
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
5
6
.
31.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
, 1930, University of California Publication for Engineering,
2
, p.
443.7
.
32.
Lyall
,
M. E.
,
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Kohli
,
A.
, 2007, “
Heat Transfer for Low Aspect Ratio Pin Fins
,” ASME Paper No. GT2007-27431.
You do not currently have access to this content.