This paper investigates the influence of stator-rotor interaction on the stage performance of three blade tip geometries. A reference flat tip is used to assess two different recess blade geometries. The study is made in the context of the realistic turbine stage configuration provided by the ETHZ 1.5-stage LISA turbine research facility. This numerical investigation describes the details of unsteady recess cavity flow structure and confirms the beneficial effects of the improved recess geometry over the flat tip and the nominal recess design both in terms of stage efficiency and tip heat load. The tip flow field obtained from the improved recess design combines the advantages of a nominal recess design (aerodynamic sealing) and the flat tip configuration. The turbine stage capacity is almost unchanged between the flat tip and the improved recess tip cases, which simplifies the design procedure when using the improved recess design. The overall heat load in the improved recess case is reduced by 26% compared with the flat tip and by 14% compared with the nominal recess. A key finding of this study is the difference in effects of the upstream stator wake on the recess cavity flow. Where cavity flow in the nominal design is only moderately influenced, the improved recess cavity flow shows enhanced flow unsteadiness. The tip Nusselt number from a purely steady-state prediction in the nominal recess case is nearly identical to the time-average prediction. The improved design shows a 6% difference between steady-state and time-average tip Nusselt number. This is due to the strong influence of the wake passing on the recess cavity flow. In fact, the wake enhances a small flow difference at the leading edge of the recess cavity between the nominal and improved recess cavities, which results in a completely different flow field further downstream in the recess cavity.

1.
Rains
,
D. A.
, 1954, “
Tip Clearance Flows in Axial Flow Compressors and Pumps
,” California Institute of Technology, Hydrodynamics and Mechanical Engineering Laboratories, Report No. 5.
2.
Sjolander
,
S. A.
, and
Amrud
,
K. K.
, 1987, “
Effects of Tip Clearance on Blade Loading in a Planar Cascade of Turbine Blades
,”
ASME J. Turbomach.
0889-504X,
109
, pp.
237
244
.
3.
Yaras
,
M. I.
,
Zhu
,
Y.
, and
Sjolander
,
S. A.
, 1989, “
Flow Field in the Tip Gap of a Planar Cascade of Turbine Blades
,”
ASME J. Turbomach.
0889-504X,
111
, pp.
276
283
.
4.
Bindon
,
J. P.
, 1989, “
The Measurement and Formation of Tip Leakage Loss
,”
ASME J. Turbomach.
0889-504X,
111
, pp.
257
263
.
5.
Bindon
,
J. P.
, and
Morphis
,
G.
, 1992, “
The Development of Axial Turbine Leakage Loss for Two Profiled Tip Geometries Using Linear Cascade Data
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
198
203
.
6.
Heyes
,
F. J. G.
,
Hodson
,
H. P.
, and
Dailey
,
G. M.
, 1992, “
The Effect of Blade Tip Geometry on the Tip Leakage Flow in Axial Turbine Cascades
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
643
651
.
7.
Yaras
,
M. I.
, and
Sjolander
,
S. A.
, 1992, “
Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades: Part I—Tip Gap Flow
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
652
659
.
8.
Yaras
,
M. I.
, and
Sjolander
,
S. A.
, 1992, “
Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades: Part II—Downstream Flow Field and Blade Loading
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
660
667
.
9.
Tallman
,
J.
, and
Lakshminarayana
,
B.
, 2001, “
Numerical Simulation of Tip Clearance Flows in Axial Flow Turbines, With Emphasis on Flow Physics, Part I—Effect of Tip Clearance Height
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
314
323
.
10.
Tallman
,
J.
, and
Lakshminarayana
,
B.
, 2001, “
Numerical Simulation of Tip Clearance Flows in Axial Flow Turbines, With Emphasis on Flow Physics, Part II—Effect of Outer Casing Relative Motion
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
324
333
.
11.
Bunker
,
R. S.
,
Bailey
,
J. C.
, and
Ameri
,
A. A.
, 2000, “
Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine: Part 1—Experimental Results
,”
ASME J. Turbomach.
0889-504X,
122
(
2
), pp.
263
271
.
12.
Azad
,
G. M.
,
Han
,
J. -C.
, and
Boyle
,
R. J.
, 2000, “
Heat Transfer and Flow on the Squealer Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
725
732
.
13.
Azad
,
G. M.
,
Han
,
J. -C.
,
Bunker
,
R. S.
, and
Lee
,
C. P.
, 2002, “
Effect of Squealer Geometry Arrangement on a Gas Turbine Blade Tip Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
452
459
.
14.
Kwak
,
J. S.
,
Ahn
,
J.
, and
Han
,
J. -C.
, 2004, “
Effects of Rim Location, Rim Height, and Tip Clearance on the Tip and Near Tip Region Heat Transfer of a Gas Turbine Blade
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
5651
5663
.
15.
Ameri
,
A. A.
, and
Bunker
,
R. S.
, 2000, “
Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine: Part 2—Computational Results
,”
ASME J. Turbomach.
0889-504X,
122
(
2
), pp.
272
277
.
16.
Ameri
,
A. A.
, 2001, “
Heat Transfer and Flow on the Blade Tip of a Gas Turbine Equipped With a Mean-Camberline Strip
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
704
708
.
17.
Ameri
,
A. A.
,
Steinthorsson
,
E.
, and
Rigby
,
D. L.
, 1998, “
Effect of Squealer Tip on Rotor Heat Transfer and Efficiency
,”
ASME J. Turbomach.
0889-504X,
120
(
4
), pp.
753
759
.
18.
Camci
,
C.
,
Dey
,
D.
, and
Kavurmacioglu
,
L.
, 2005, “
Aerodynamics of Tip Leakage Flows Near Partial Squealer Rims in an Axial Flow Turbine Stage
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
14
24
.
19.
Dunn
,
M. G.
, and
Haldemann
,
C. W.
, 2000, “
Time Averaged Heat Flux for a Recessed Blade Tip, Lip and Platform of a Transonic Turbine Blade
,” ASME Paper No. GT2000-0197.
20.
Green
,
B. R.
,
Barter
,
J. W.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
, 2004, “
Averaged and Time-Dependent Aerodynamics of a HPT Blade Tip Cavity and Stationary Shroud: Comparison of Computational and Experimental Results
,” ASME Paper No. GT2004-53443.
21.
Molter
,
S. M.
,
Dunn
,
M. G.
,
Haldeman
,
C. W.
,
Bergholz
,
R. F.
, and
Vitt
,
P.
, 2006, “
Heat Flux Measurement and Predictions for the Blade Tip Region of a High-Pressure Turbine
,” ASME Paper No. GT2006-90048.
22.
Mischo
,
B.
,
Behr
,
T.
, and
Abhari
,
R. S.
, 2008, “
Flow Physics and Profiling of Recessed Blade Tips: Impact on Performance and Heat Load
,”
ASME J. Turbomach.
0889-504X,
130
, p.
021008
.
23.
Behr
,
T.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, 2007, “
Unsteady Flow Physics and Performance of a One-and-1/2-Stage Unshrouded High Work Turbine
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
348
359
.
24.
Mischo
,
B.
,
Abhari
,
R. S.
, and
Behr
,
T.
, 2007, “
Turbine Blade With Recessed Tip
,” World International Property Organisation (WIPO), No. WO, 2007/080189 A1.
25.
Chima
,
R. V.
, 1996, “
A k-Omega Turbulence Model for Quasi-Three-Dimensional Turbomachinery Flows
,” AIAA Paper No., 96-0248.
26.
Burdet
,
A.
,
Mischo
,
B.
,
Lakehal
,
D.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, 2003, “
Prediction of Vorticity and Loss Generation Downstream of an Annular Cascade
,”
Proceedings of ETC5
, Prague, Czech Republic, pp.
996
1005
.
27.
Burdet
,
A.
, and
Abhari
,
R. S.
, 2007, “
3D Flow Prediction and Improvement of Holes Arrangement of a Film-Cooled Turbine Blade Using a Feature-Based Jet Model
,”
ASME J. Turbomach.
0889-504X,
129
(
2
), pp.
258
268
.
28.
Mansour
,
M.
,
Chokani
,
N.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, 2008, “
Impact of Time-Resolved Entropy Measurement on a One-and-1/2-Stage Axial Turbine Performance
,” ASME Paper No. GT2008-50807.
You do not currently have access to this content.