Turbines are designed to operate with high inlet temperatures to improve engine performance. To reduce NOx resulting from combustion, designs for combustors attempt to achieve flat pattern factors that results in high levels of heat transfer to the endwall of the first stage vane. Film-cooling is still one of the most effective cooling methods for many component features including the endwall. This paper presents results from a computational study of a film-cooled endwall. The endwall design considers both an upstream slot, representing the combustor—turbine junction, and a midpassage slot, representing the mating between the adjacent vanes. The focus of this study is on comparing adiabatic effectiveness levels on the endwall with varying leakage flowrates and gap widths. Results indicate reasonable agreement between computational predictions and experimental measurements of adiabatic effectiveness levels along the endwall. The results of this study show that the midpassage slot has a large influence on the coolant coverage. It was also shown that by raising the combustor relative to the downstream vane endwall, better coolant coverage from the combustor-turbine slot could be achieved.

1.
Maekawa
,
A.
,
Akita
,
E.
,
Akagi
,
K.
, and
Uemura
,
K.
, 2002, “
Long Term Verification Results & Reliability Improvement of M501G Gas Turbine
,”ASME Paper No. GT2002-30162.
2.
Ito
,
E.
,
Okada
,
I.
,
Tsukagoshi
,
K.
,
Muyama
,
A.
, and
Masada
,
J.
, 2007, “
Development of Key Technologies for the Next Generation Gas Turbine
,” ASME Paper No. GT2007-28211.
3.
Blair
,
M. F.
, 1974, “
An Experimental Study of Heat Transfer and Film Cooling on a Large-Scale Turbine Endwalls
,”
ASME J. Heat Transfer
0022-1481,
96
, pp.
524
529
.
4.
Yamao
,
H.
, and
Aoki
,
K.
,
Takeishi
,
K.
, and
Takeda
,
K.
, 1987, “
An Experimental Study for Endwall Cooling Design of Turbine Vanes
,”
IGTC-1987
, Tokyo, Japan.
5.
Burd
,
S. W.
, and
Simon
,
T. W.
, 2000, “
Effects of Slot Blefed Injection Over a Contoured Endwall Nozzle Guide Vane Cooling Performance: Part 1: Flow Field Measurements
,” ASME Paper No. 2000-GT-199.
6.
Burd
,
S. W.
,
Satterness
,
C. J.
, and
Simon
,
T. W.
, 2000, “
Effects of Slot Bleed Injection Over a Contoured Endwall Nozzle Guide Vane Cooling Performance: Part 2: Thermal Measurements
,” ASME Paper No. 2000-GT-200.
7.
Colban
,
W. F.
,
Thole
,
K. A.
, and
Zess
,
G.
, 2003, “
Combustor-Turbine Interface Studies: Part 1: Endwall Measurements
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
193
202
.
8.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
, 1996, “
Distribution of Film-Cooling Effectiveness on a Turbine Endwall Measured Using the Ammonia and Diazo Technique
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
613
621
.
9.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
, 1997, “
Aerodynamic Aspects if Endwall Film-Cooling
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
786
793
.
10.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
, 1999, “
The Design of an Improved Endwall Film-Cooling Configuration
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
772
780
.
11.
Zhang
,
L. J.
, and
Jaiswal
,
R. S.
, 2001, “
Turbine Nozzle Endwall Film-Cooling Study Using Pressure Sensitive Paint
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
730
738
.
12.
Nicklas
,
M.
, 2001, “
Film-Cooled Turbine Endwall in a Transonic Flow Field: Part II—Heat Transfer and Film-Cooling Effectiveness
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
720
729
.
13.
Kost
,
F.
, and
Nicklas
,
M.
, 2001, “
Film-Cooled Turbine Endwall in a Transonic Flow Field: Part I—Aerodynamic Measurements
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
709
729
.
14.
Knost
,
D. G.
, and
Thole
,
K. A.
, 2005, “
Adiabatic Effectiveness Measurements of Endwall Film-Cooling for a First-Stage Vane
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
297
305
.
15.
Knost
,
D. G.
, and
Thole
,
K. A.
, 2005, “
Computational Predictions of Endwall Film-Cooling for a First Stage Vane
,”
Int. J. Turbo Jet Engines
0334-0082,
22
, pp.
41
58
.
16.
Yu
,
Y.
, and
Chyu
,
M. K.
, 1998, “
Influence of Gap Leakage Downstream of the Injection Holes on Film-Cooling Performance
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
541
548
.
17.
Aunapu
,
N. V.
,
Volino
,
R. J.
,
Flack
,
K. A.
, and
Stoddard
,
R. M.
, 2000, “
Secondary Flow Measurements in a Turbine Passage With Endwall Flow Modification
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
651
658
.
18.
Ranson
,
W.
,
Thole
,
K. A.
, and
Cunha
,
F.
, 2004, “
Adiabatic Effectiveness Measurements and Predictions of Leakage Flows Along a Blade Endwall
,” ASME Paper No. IMECE2004-62021.
19.
Piggush
,
J. D.
, and
Simon
,
T. W.
, 2005, “
Flow Measurements in a First Stage Nozzle Cascade Having Endwall Contouring, Leakage and Assembly Features
,” ASME Paper No. GT2005-68340.
20.
Piggush
,
J. D.
, and
Simon
,
T. W.
, 2007, “
Heat Transfer Measurements in a First Stage Nozzle Cascade Having Endwall Contouring, Leakage and Assembly Features
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
782
788
.
21.
Reid
,
K.
,
Denton
,
J.
,
Pullan
,
G.
,
Curtis
,
E.
, and
Longley
,
J.
, 2007, “
The Interaction of Turbine Inter-Platform Leakage Flow With the Mainstream Flow
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
303
310
.
22.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
, 2006, “
Effects of Roughness and Mid-Passage Gap on Endwall Film-Cooling
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
62
70
.
23.
Fluent Inc.
, 2005, FLUENT Users’ Guide, Version 6.1, New Hampshire.
24.
Hermanson
,
K.
, and
Thole
,
K. A.
, 2000, “
Effect of Inlet Profiles on Endwall Secondary Flows
,”
J. Propul. Power
0748-4658,
16
, pp.
286
296
.
25.
Barringer
,
M. D.
,
Richard
,
O. T.
,
Walter
,
J. P.
,
Spitzel
,
S. M.
, and
Thole
,
K. A.
, 2002, “
Flow Field Simulation of a Gas Turbine Combustor
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
508
516
.
You do not currently have access to this content.