The accurate prediction of mean flow fields with high degrees of curvature, adverse pressure gradients, and three-dimensional turbulent boundary layers typically present in centrifugal compressor stages is a significant challenge when applying Reynolds averaged Navier–Stokes turbulence modeling techniques. The current study compares the steady-state mixing plane predictions using four turbulence models for a centrifugal compressor stage with a tandem impeller and a “fish-tail” style discrete passage diffuser. The models analyzed are the k-ε model (an industry standard for many years), the shear stress transport (SST) model, a proposed modification to the SST model denoted as the SST-reattachment modification (RM), and the Speziale, Sarkar, and Gatski Reynolds stress model (RSM-SSG). Comparisons with measured performance parameters—the stage total-to-static pressure and total-to-total temperature ratios—indicate more accurate performance predictions from the RSM-SSG and SST models as compared to the k-ε and SST-RM models. Details of the different predicted flow fields are presented. Estimates of blockage, aerodynamic slip factor, and impeller exit velocity profiles indicate significant physical differences in the predictions at the impeller-diffuser interface. Topological flow field differences are observed: the separated tip clearance flow is found to reattach with the SST, SST-RM, and RSM-SSG models, while it does not with the k-ε model, a larger shroud separation at the impeller exit seen with the SST and SST-RM models, and core flow differences are in the complex curved diffuser geometry. The results are discussed in terms of the production and dissipation of k predicted by the various models due to their intrinsic modeling assumptions. These comparisons will assist aerodynamic designers in choosing appropriate turbulence models, and may benefit future modeling research.

1.
Ziegler
,
K. U.
,
Gallus
,
H. E.
, and
Niehuis
,
R.
, 2003, “
A Study on Impeller-Diffuser Interaction—Part I: Influence on the Performance
,”
ASME J. Turbomach.
0889-504X,
125
(
1
), pp.
173
182
.
2.
Ziegler
,
K. U.
,
Gallus
,
H. E.
, and
Niehuis
,
R.
, 2003, “
A Study on Impeller-Diffuser Interaction—Part II: Detailed Flow Analysis
,”
ASME J. Turbomach.
0889-504X,
125
(
1
), pp.
183
192
.
3.
Smirnov
,
P. E.
,
Hansen
,
T.
, and
Menter
,
F. R.
, 2007, “
Numerical Simulation of Turbulent Flows in Centrifugal Compressor Stages With Different Radial Gaps
,” ASME Paper No. GT2007-27376.
4.
Shabbir
,
A.
,
Zhu
,
J.
, and
Celestina
,
M.
, 1996, “
Assessment of Three Turbulence Models in a Compressor Rotor
,” ASME Paper No. 96-GT-198.
5.
Roberts
,
D. A.
, and
Steed
,
R.
, 2004, “
A Comparison of Steady-State Centrifugal Stage CFD Analysis to Experimental Rig Data
,”
Proceedings of the ANSYS User’s Conference
, Pittsburgh, PA.
6.
Denton
,
J. D.
, and
Dawes
,
W. N.
, 1999, “
Computational Fluid Dynamics for Turbomachinery Design
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
213
, pp.
107
124
.
7.
Chima
,
R. V.
, 1996, “
Calculation of Tip Clearance Effects in a Transonic Compressor Rotor
,”
NASA
Report No. TM-107216.
8.
Jones
,
W. P.
, and
Launder
,
B. E.
, 1973, “
The Calculation of Low-Reynolds-Number-Phenomena With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
0017-9310,
16
, pp.
1119
1130
.
9.
Menter
,
F. R.
, 1994, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
0001-1452,
32
(
8
), pp.
1598
1605
.
10.
Wilcox
,
D. C.
, 1988, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
0001-1452,
26
(
11
), pp.
1299
1310
.
11.
Menter
,
F. R.
, 2008, private communication.
12.
Speziale
,
C. G.
,
Sarkar
,
S.
, and
Gatski
,
T. B.
, 1991, “
Modelling the Pressure-Strain Correlation of Turbulence: An Invariant Dynamical Systems Approach
,”
J. Fluid Mech.
0022-1120,
227
, pp.
245
272
.
13.
Roberts
,
D. A.
, and
Kacker
,
S. C.
, 2002, “
Numerical Investigation of Tandem-Impeller Designs for a Gas Turbine Compressor
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
36
44
.
14.
Raw
,
M. J.
, 1996, “
Robustness of Coupled Algebraic Multigrid for the Navier Stokes Equations
,” AIAA Paper No. 96-0297.
15.
Barth
,
T. J.
, and
Jesperson
,
D. C.
, 1989, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,” AIAA Paper No. 89-0366.
16.
Rhie
,
C. M.
, and
Chow
,
W. L.
, 1983, “
A Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
,”
AIAA J.
0001-1452,
21
(
11
), pp.
1525
1532
.
17.
Galpin
,
P. F.
,
Broberg
,
R. B.
, and
Hutchinson
,
B. R.
, 1995, “
Three-Dimensional Navier Stokes Predictions of Steady State Rotor/Stator Interaction With Pitch Change
,”
Proceedings of the Third Annual Conference of the CFD Society of Canada
, Banff, Alberta, Canada.
18.
2006,
CFX-Solver Theory Guide. ANSYS CFX Release 11.0
,
ANSYS Inc.
,
Canonsburg, PA
.
19.
Bourgeois
,
J. A.
, 2008, “
Numerical Mixing Plane Studies With Validation for Aero-Engine Centrifugal Compressor Design
,” MS thesis, University of Western Ontario, London, Ontario, Canada.
20.
Smirnov
,
P. E.
, and
Menter
,
F. R.
, 2008, “
Sensitization of the SST Turbulence Model to Rotation and Curvature by Applying the Spalart-Shur Correction Term
,” ASME Paper No. GT2008-50480.
21.
Wilcox
,
D. C.
, 2006,
Turbulence Modeling for CFD
, 3rd ed.,
DCW Industries
,
La Cañada, CA
.
22.
Favre
,
A.
, 1965, “
Équations des gaz turbulent compressibles II. Méthode des vitesses moyennes; méthode des vitesses macroscopiques pondérées par la masse volumique
,”
Journal de Mécanique
0021-7832,
4
(
4
), pp.
391
421
.
23.
Launder
,
B. E.
, and
Sharma
,
B. I.
, 1974, “
Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transfer
0094-4548,
1
(
2
), pp.
131
137
.
24.
Bradshaw
,
P.
,
Ferriss
,
D. H.
, and
Atwell
,
N. P.
, 1967, “
Calculation of Boundary Layer Development Using the Turbulent Energy Equation
,”
J. Fluid Mech.
0022-1120,
28
(
3
), pp.
593
616
.
25.
Cumpsty
,
N. A.
, 1989,
Compressor Aerodynamics
,
Longman Scientific and Technical
,
Essex, England
.
26.
Bourgeois
,
J. A.
,
Martinuzzi
,
R. J.
,
Roberts
,
D.
,
Savory
,
E.
, and
Zhang
,
C.
, 2009, “
Experimental and Numerical Investigation of an Aero-Engine Centrifugal Compressor
,” ASME Paper No. GT2009-59808.
You do not currently have access to this content.