Mass transfer measurements on the endwall and blade suction surfaces are performed in a five-blade linear cascade with a high-performance rotor blade profile. The effects of purge flow from the wheelspace cavity entering the hot gas path are simulated by injecting naphthalene-free and naphthalene-saturated air through a slot upstream of the blade row at 45 deg to the endwall, for a Reynolds number of 6×105 based on blade true chord and cascade exit velocity, and blowing ratios of 0.5, 1, and 1.5. Oil-dot visualization indicates that with injection, a recirculation region is set up upstream of the leading edge, and the growth of the passage vortex is altered. The coolant exiting from the slot is drawn to the suction side of the blade and is pushed up along the suction surface of the blade by the secondary flow. For blowing ratios of 0.5 and 1.0, only a little coolant reaches the pressure side in the aft part of the passage. However, at a blowing ratio of 1.5, there is a dramatic change in the flow structure. Both the oil-dot visualization and the cooling effectiveness maps indicate that at this blowing ratio, the coolant exiting the slot has sufficient momentum to closely follow the blade profile and is not significantly entrained into the passage vortex. As a result, high cooling effectiveness values are obtained at the pressure side of the endwall, well into the midchord and aft portions of the blade passage.

1.
Blair
,
M. F.
, 1974, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls
,”
ASME J. Heat Transfer
0022-1481,
96
, pp.
524
529
.
2.
Langston
,
L. S.
, 1980, “
Crossflows in a Turbine Passage
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
866
874
.
3.
Sharma
,
O. P.
, and
Butler
,
T. L.
, 1987, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
0889-504X,
109
, pp.
229
236
.
4.
Wang
,
H. -P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
, 1997, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
1
8
.
5.
Graziani
,
R. A.
,
Blair
,
M. F.
,
Taylor
,
J. R.
, and
Mayle
,
R. E.
, 1980, “
An Experimental Study of Endwall and Airfoil Surface Heat Transfer in a Large Scale Turbine Blade Cascade
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
257
267
.
6.
Goldstein
,
R. J.
, and
Spores
,
R. A.
, 1988, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
0022-1481,
110
, pp.
862
869
.
7.
Han
,
S.
, and
Goldstein
,
R. J.
, 2006, “
Influence of Blade Leading Edge Geometry on Turbine Endwall Heat (Mass) Transfer
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
798
813
.
8.
Han
,
S.
, and
Goldstein
,
R. J.
, 2007, “
Heat Transfer Study in a Linear Turbine Cascade Using a Thermal Boundary Layer Measurement Technique
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
1384
1394
.
9.
Radomsky
,
R. W.
, and
Thole
,
K. A.
, 2000, “
High Freestream Turbulence Effects on Endwall Heat Transfer for a Gas Turbine Stator Vane
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
699
798
.
10.
Hills
,
N. J.
,
Chew
,
J. W.
, and
Turner
,
A. B.
, 2002, “
Computational and Mathematical Modeling of Turbine Rim Seal Ingestion
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
306
315
.
11.
Gentilhomme
,
O.
,
Hills
,
N. J.
,
Turner
,
A. B.
, and
Chew
,
J. W.
, 2003, “
Measurement and Analysis of Ingestion Through a Turbine Rim Seal
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
505
512
.
12.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
and
Gier
,
J.
, 2009, “
Influence of Rim-Seal Purge Flow on Performance of Endwall-Profiled Axial Turbines
,”
ASME
Paper No. GT2009-59653.
13.
McLean
,
C.
,
Camci
,
C.
, and
Glezer
,
B.
, 2001a, “
Mainstream Aerodynamic Effects Due to Wheelspace Coolant Injection in a High-Pressure Turbine Stage. Part I: Aerodynamic Measurements in the Stationary Frame
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
687
696
.
14.
McLean
,
C.
,
Camci
,
C.
, and
Glezer
,
B.
, 2001b, “
Mainstream Aerodynamic Effects Due to Wheelspace Coolant Injection in a High-Pressure Turbine Stage. Part II: Aerodynamic Measurements in the Rotational Frame
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
697
703
.
15.
Reid
,
K.
,
Denton
,
J.
,
Pullan
,
G.
,
Curtis
,
E.
, and
Longley
,
J.
, 2006, “
The Efect of Stator-Rotor Hub Sealing Flow on the Mainstream Aerodyamics of a Turbine
,”
ASME
Paper No. GT-2006-90838.
16.
Friedrichs
,
S.
,
Hodson
,
H.
, and
Dawes
,
W.
, 1997, “
Aerodynamics Aspects of Film Cooling
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
786
793
.
17.
Gränser
,
D.
, and
Schulenberg
,
T.
, 1990, “
Prediction and Measurement of Film Cooling Effectiveness for a First-Stage Turbine Vane Shroud
,”
ASME
Paper No. 90-GT-95.
18.
Harasgama
,
S. P.
, and
Burton
,
C. D.
, 1992, “
Film Cooling Research on the Endwall of a Turbine Nozzle Guide Vane in a Short Duration Annular Cascade: Part 2—Analysis and Correlation of Results
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
741
746
.
19.
Köst
,
F.
, and
Nicklas
,
M.
, 2001, “
Film-Cooled Turbine Endwall in a Transonic Flow Field: Part I—Aerodynamic Measurements
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
709
719
.
20.
Knost
,
D. G.
, and
Thole
,
K. A.
, 2005, “
Adiabatic Effectiveness Measurements of Endwall Film-Cooling for a First Stage Vane
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
297
305
.
21.
Burd
,
S. W.
,
Satterness
,
C. J.
, and
Simon
,
T. W.
, 2000, “
Effects of Slot Bleed Injection Over a Contoured Endwall on Nozzle Guide Vane Cooling Performance: Part II—Thermal Measurements
,”
ASME
Paper No. 2000-GT-200.
22.
Oke
,
R. A.
,
Simon
,
T. W.
,
Shih
,
T.
,
Zhu
,
B.
,
Lin
,
L.
, and
Chyu
,
M.
, 2001, “
Measurements over a Film-Cooled, Contoured Endwall With Various Coolant Injection Rates
,”
ASME
Paper No. 2001-GT-0140.
23.
Oke
,
R. A.
, and
Simon
,
T. W.
, 2002, “
Film Cooling Experiments With Flow Introduced Upstream of a First Stage Nozzle Guide Vane Through Slots of Various Geometries
,”
ASME
Paper No. 2002-GT-30169.
24.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
, 2006, “
Effects of Mid-Passage Gap, Endwall Misalignment and Roughness on Endwall Film-Cooling
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
62
70
.
25.
Piggush
,
J. D.
, and
Simon
,
T. W.
, 2007, “
Heat Transfer Measurements In A First Stage Nozzle Cascade Having Endwall Contouring: Misalignment and Leakage Studies
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
782
790
.
26.
Yu
,
Y.
, and
Chyu
,
M. -K.
, 1996, “
Influence of a Leaking Gap Downstream of the Injection Holes on Film Cooling Performance
,”
ASME
Paper No. 96-GT-175.
27.
Papa
,
M.
,
Srinivasan
,
V.
,
Goldstein
,
R. J.
, and
Gori
,
F.
, 2009, “
Effect of Gap Geometry on the Cooling Effectiveness of the Wheelspace Coolant Injection Upstream of a Row of Rotor Blades
,”
Proceedings of the International Symposium on Heat Transfer in Gas Turbine Systems
, Antalya, Turkey, Aug. 9–14.
28.
Lynch
,
S. P.
, and
Thole
,
K. A.
, 2008, “
The Effect of Combustor-Turbine Interface Gap Leakage on the Endwall Heat Transfer for a Nozzle Guide Vane
,”
ASME J. Turbomach.
0889-504X,
130
, p.
041019
.
29.
Zhang
,
L. J.
, and
Jaiswal
,
R. S.
, 2001, “
Turbine Nozzle Endwall Film Cooling Study Using Pressure Sensitive Paint
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
730
738
.
30.
Zhang
,
L.
, and
Moon
,
H. -K.
, 2004, “
Turbine Nozzle Endwall Inlet Film Cooling: The Effect of a Back-Facing Step and Velocity Ratio
,”
ASME
Paper No. IMECE2004-59117.
31.
Yang
,
H.
,
Gao
,
Z.
,
Chen
,
H. C.
,
Han
,
J. C.
, and
Schobeir
,
M. T.
, 2009, “
Prediction of Film Cooling and Heat Transfer on a Rotating Blade Platform With Stator-Rotor Purge and Discrete Film-Hole Flows in a 1-1/2 Turbine Stage
,”
ASME J. Turbomach.
0889-504X,
131
, p.
041003
.
32.
Wright
,
L. M.
,
Blake
,
S. A.
,
Rhee
,
D. -M.
, and
Han
,
J. -C.
, 2009, “
Effect of Upstream Wake with Vortex on Turbine Blade Platform Film Cooling With Simulated Stator-Rotor Purge Flow
,”
ASME J. Turbomach.
0889-504X,
131
, p.
021017
.
33.
Wright
,
L. M.
,
Blake
,
S.
, and
Han
,
J. -C.
, 2007, “
Effectiveness Distributions on Turbine-Blade Cascade Platforms Through Simulated Stator-Rotor Seals
,”
J. Thermophys. Heat Transfer
0887-8722,
21
(
4
), pp.
754
762
.
34.
Goldstein
,
R. J.
, and
Cho
,
H. H.
, 1995, “
A Review of Mass Transfer Measurements Using Napthalene Sublimation
,”
Exp. Therm. Fluid Sci.
0894-1777,
10
, pp.
416
434
.
35.
Eckert
,
E. R. G.
, 1984, “
Analysis of Film Cooling and Full-Coverage Film Cooling of Gas Turbine Blades
,”
ASME J. Eng. Power
0022-0825,
106
, pp.
206
213
.
36.
Bogard
,
D. G.
, and
Thole
,
K. A.
, 2006, “
Gas Turbine Film Cooling
,”
J. Propul. Power
0748-4658,
22
, pp.
249
270
.
37.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
, 1996, “
Film Cooling with Compound Holes: Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
800
806
.
You do not currently have access to this content.