An experimental study on film cooling performance of laterally inclined diffuser shaped cooling holes is presented. The measurements have been conducted on a flat plate with coolant ejected from a plenum. The film cooling effectiveness downstream of a row of four laidback fanshaped holes with sharp edged diffusers has been determined by means of infrared (IR) thermography. A variety of geometric parameters has been tested, including the inclination angle, the compound angle, the area ratio, and the pitch to diameter ratio. All tests have been performed over a wide range of engine typical blowing ratios (M=0.53.0). The hot gas Reynolds number and the coolant to hot gas density ratio have been kept constant close to engine realistic conditions. The results, presented in terms of contour plots of related adiabatic film cooling effectiveness as well as laterally averaged related values, clearly show the influences of the cooling hole geometry. Increasing the area ratio and the compound angle, in general, leads to higher values of the effectiveness, whereas steeper injection causes a reduction of the effectiveness.

1.
Bunker
,
R. S.
, 2005, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
441
453
.
2.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
, 1974, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
17
, pp.
595
607
.
3.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 1998, “
Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
549
556
.
4.
Chen
,
P. H.
,
Hung
,
M. S.
, and
Ding
,
P. P.
, 2001, “
Film Cooling Performance on Curved Walls With Compound Angle Hole Configuration
,”
Ann. N.Y. Acad. Sci.
0077-8923,
934
, pp.
353
360
.
5.
Yu
,
Y.
,
Yen
,
C. H.
,
Shih
,
T. I. P.
,
Chyu
,
M. K.
, and
Gogineni
,
S.
, 2002, “
Film Cooling Effectiveness and Heat Transfer Distributions Around Diffusion Shaped Holes
,”
ASME
Paper No. 99-GT-34.
6.
Bell
,
C. M.
,
Hamakawa
,
H.
, and
Ligrani
,
P. M.
, 2000, “
Film Cooling From Shaped Holes
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
224
232
.
7.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2003, “
Effect of Internal Coolant Crossflow on the Effectiveness of Shaped Film-Cooling Holes
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
547
554
.
8.
Saumweber
,
C.
, and
Schulz
,
A.
, 2008, “
Effect of Geometry Variations on the Cooling Performance of Fan-Shaped Cooling Holes
,”
ASME
Paper No. GT2008-51038.
9.
Yuen
,
C. H. N.
,
Martinez-Botas
,
R. F.
, and
Whitelaw
,
J. H.
, 2001, “
Film Cooling Effectiveness Downstream of Compound and Fan-Shaped Holes
,”
ASME
Paper No. 2001-GT-0131.
10.
Gritsch
,
M.
,
Colban
,
W.
,
Schär
,
H.
, and
Döbbeling
,
K.
, 2005, “
Effect of Hole Geometry on the Thermal Performance of Fan-Shaped Film Cooling Holes
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
718
725
.
11.
Colban
,
W.
,
Thole
,
K. A.
, and
Bogard
,
D.
, 2008, “
A Film-Cooling Correlation for Shaped Holes on a Flat-Plate Surface
,”
ASME
Paper No. GT2008-50121.
12.
Davidson
,
F. T.
,
Bruce-Black
,
J. E.
,
Bogard
,
D. G.
, and
Johns
,
D. R.
, 2008, “
Adiabatic Effectiveness on the Suction Side of a Turbine Vane and the Effects of Curvature at the Point of Film Injection
,”
ASME
Paper No. GT2008-51350.
13.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
, 1994, “
Film Cooling With Compound Angle Holes: Adiabatic Effectiveness
,”
ASME
Paper No. 94-GT-312.
14.
Choe
,
H.
,
Kay
,
W. M.
, and
Moffat
,
R. J.
, 1974, “
The Superposition Approach to Film-Cooling
,”
ASME
Paper No. 74-WA/GT-27.
15.
Martiny
,
M.
,
Schiele
,
R.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 1996, “
In Situ Calibration for Quantitative Thermography
,”
QIRT Eurotherm Series
,
50
, pp.
3
8
.
16.
Schulz
,
A.
, 2000, “
Infrared Thermography as Applied to Film Cooling of Gas Turbine Components
,”
Meas. Sci. Technol.
0957-0233,
11
, pp.
948
956
.
17.
Ochs
,
M.
,
Schulz
,
A.
, and
Bauer
,
H. -J.
, 2009, “
A Novel Calibration Method for an Infrared Thermography System Applied to Heat Transfer Experiments
,”
Meas. Sci. Technol.
0957-0233,
20
, p.
075103
.
18.
Kline
,
S.
, and
McClintock
,
F.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
You do not currently have access to this content.