Darrieus wind turbines are experiencing a renewed interest in the wind energy scenario, in particular, whenever small and medium-size installations are considered. In these contexts, the average wind speeds are generally quite low due to scale effects and therefore the most exploited design choices for the turbines are the H-shape configuration, as the entire blade can take advantage of the maximum rotational radius, and high chord to radius ratios, in order to ensure suitable Reynolds numbers on the airfoils. By doing so, the aerodynamic effects induced by the motion of the airfoils in a curved flowpath become more evident and the airfoils themselves have to be designed to compensate these phenomena if conventional design tools based on the blade element momentum (BEM) theory are used. In this study, fully unsteady 2D simulations were exploited to analyze a three-bladed H-Darrieus wind turbine in order to define the real flow structure and its effects on the turbine performance; in detail, the influence of both the virtual camber and the virtual incidence were investigated. Computational fluid dynamics (CFD) results were supported by experimental data collected on full-scale models reproducing two different airfoil mountings. Finally, the proper design criteria to compensate these phenomena are proposed and their benefits on a conventional simulation with a BEM approach are discussed.

References

1.
GWEC
,
2012
, “
Global Wind Energy Outlook
,” Global Wind Energy Council, Brussels, Belgium, technical report.
2.
Kirke
,
B. K.
,
1998
, “
Evaluation of Self-Starting Vertical Axis Wind Turbines for Standalone Applications
,” Ph.D. thesis, Griffith University, Gold Coast, Australia.
3.
AWEA
,
2008
, “
Small Wind Turbine Global Market Study
,” American Wind Energy Association, Washington, DC, technical report.
4.
Paraschivoiu
,
I.
,
2002
,
Wind Turbine Design With Emphasis on Darrieus Concept
,
Polytechnic International Press
,
Montreal, Canada
.
5.
Bianchini
,
A.
,
2011
, “
Performance Analysis and Optimization of a Darrieus VAWT
,” Ph.D. thesis, School of Energy Engineering and Innovative Industrial Technologies, University of Florence, Florence, Italy.
6.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Carnevale
,
E. A.
,
Ferrari
,
L.
, and
Magnani
,
S.
,
2012
, “
Feasibility Analysis of a Darrieus Vertical-Axis Wind Turbine Installation in the Rooftop of a Building
,”
Appl. Energy
,
97
, pp.
921
929
.10.1016/j.apenergy.2011.12.008
7.
Balduzzi
,
F.
,
Bianchini
,
A.
, and
Ferrari
,
L.
,
2012
, “
Microeolic Turbines in the Built Environment: Influence of the Installation Site on the Potential Energy Yield
,”
Renewable Energy
,
45
, pp.
163
174
.10.1016/j.renene.2012.02.022
8.
Sharpe
,
T.
, and
Proven
,
G.
,
2010
, “
Crossflex: Concept and Early Development of a True Building Integrated Wind Turbine
,”
Energy Build.
,
42
(
12
), pp.
2365
2375
.10.1016/j.enbuild.2010.07.032
9.
Bianchini
,
A.
,
Ferrari
,
L.
, and
Magnani
,
S.
,
2012
, “
Energy-Yield-Based Optimization of an H-Darrieus Wind Turbine
,”
ASME
Paper No. GT2012-69892. 10.1115/GT2012-69892
10.
Migliore
,
P. G.
,
Wolfe
,
W. P.
, and
Fanucci
,
J. B.
,
1980
, “
Flow Curvature Effects on Darrieus Turbine Blade Aerodynamics
,”
J. Energy
,
4
(
2
), pp.
49
55
.10.2514/3.62459
11.
Bianchini
,
A.
,
Carnevale
,
E. A.
, and
Ferrari
,
L.
,
2011
, “
A Model to Account for the Virtual Camber Effect in the Performance Prediction of an H-Darrieus VAWT Using the Momentum Models
,”
Wind Eng.
,
35
(
4
), pp.
465
482
.10.1260/0309-524X.35.4.465
12.
Bianchini
,
A.
,
Ferrari
,
L.
, and
Magnani
,
S.
,
2012
, “
On the Effects of a Skewed Flow on the Performance of a Three-Bladed H-Darrieus Turbine: Experimental and Theoretical Analyses
,”
International Conference on Applied Energy (ICAE 2012)
,
Suzhou, China
, July 5–8.
13.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbulence, Heat Mass Transfer 4
, K. Harlic, Y. Nagano, and M. Tummers, eds., Begell House, New York, pp.
625
632
.
14.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
15.
ANSYS Inc.
,
2013
, “
Fluent Theory Guide
,” Release 14.5, ANSYS Inc., Canonsburg, PA.
16.
Maître
,
T.
,
Amet
,
E.
, and
Pellone
,
C.
,
2013
, “
Modeling of the Flow in a Darrieus Water Turbine: Wall Grid Refinement Analysis and Comparison With Experiments
,”
Renewable Energy
,
51
, pp.
497
512
.10.1016/j.renene.2012.09.030
17.
Beri
,
H.
, and
Yao
,
Y.
,
2011
, “
Effect of Camber Airfoil on Self Starting of Vertical Axis Wind Turbine
,”
J. Environ. Sci. Technol.
,
4
(
3
), pp.
302
312
.10.3923/jest.2011.302.312
18.
Howell
,
R.
,
Qin
,
N.
,
Edwards
,
J.
, and
Durrani
,
N.
,
2010
, “
Wind Tunnel and Numerical Study of a Small Vertical Axis Wind Turbine
,”
Renewable Energy
,
35
(
2
), pp.
412
422
.10.1016/j.renene.2009.07.025
19.
Raciti Castelli
,
M.
,
Englaro
,
A.
, and
Benini
,
E.
,
2011
, “
The Darrieus Wind Turbine: Proposal for a New Performance Prediction Model Based on CFD
,”
Energy
,
36
(
8
), pp.
4919
4934
.10.1016/j.energy.2011.05.036
20.
Rossetti
,
A.
, and
Pavesi
,
G.
,
2013
, “
Comparison of Different Numerical Approaches to the Study of the H-Darrieus Turbines Start-Up
,”
Renewable Energy
,
50
(February), pp.
7
19
.10.1016/j.renene.2012.06.025
21.
Mandel
,
J.
,
1984
,
The Statistical Analysis of Experimental Data
,
Dover Publications
,
New York
.
22.
Bianchini
,
A.
,
Ferrari
,
L.
, and
Magnani
,
S.
,
2011
, “
Start-Up Behavior of a Three-Bladed H-Darrieus VAWT: Experimental and Numerical Analysis
,”
ASME
Paper No. GT2011-45882. 10.1115/GT2011-45882
23.
Marshall
,
L.
, and
Buhl
,
J.
, Jr.
,
2005
, “
A New Empirical Relationship Between Thrust Coefficient and Induction Factor for the Turbulent Windmill State
,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/TP-500-36834.
24.
Abbott
,
I. H.
, and
Von Doenhoff
,
A. E.
,
1959
,
Theory of Wing Sections
,
Dover Publications Inc.
,
New York
.
25.
Viterna
,
L. A.
, and
Janetzke
,
D. C.
,
1982
, “
Theoretical and Experimental Power From Large Horizontal-Axis Wind Turbines
,” NASA Lewis Research Centre, Cleveland, OH, Technical Report No. N82-33830.
26.
Cooper
,
K.
,
1998
, “
Bluff-Body Blockage Corrections in Closed- and Open-Test-Section Wind Tunnels
,”
Wind Tunnel Wall Correction (AGARD-AG-336)
, B. F. R. Ewald, ed., Advisory Group for Aerospace Research and Development, North Atlantic Treaty Organization, Neuilly-sur-Seine Cedex, France.
27.
Battisti
,
L. L.
,
Dossena
,
V. V.
,
Persico
,
G. G.
,
Zanne
,
L. L.
,
Dell'Anna
,
S. S.
, and
Paradiso
,
B. B.
,
2011
, “
Aerodynamic Measurements on a Vertical Axis Wind Turbine in a Large Scale Wind Tunnel
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p.
031201
.10.1115/1.4004360
28.
Hansen
,
M. O. L.
,
Sørensen
,
N. N.
,
Sørensen
,
J. N.
, and
Michelsen
,
J. A.
,
1997
, “
Extraction of Lift, Drag and Angle of Attack From Computed 3-D Viscous Flow Around a Rotating Blade
,”
European Wind Energy Conference (EWEC'97)
,
Dublin, Ireland
, Oct. 6–9, pp.
499
501
.
29.
Johansen
,
J.
, and
Sørensen
,
N. N.
,
2004
, “
Aerofoil Characteristics From 3D CFD Rotor Computations
,”
Wind Energy
,
7
(
4
), pp.
283
294
.10.1002/we.127
30.
“xflr5,” open source software, accessed Dec. 12,
2013
, www.xflr5.com/xflr5.htm
31.
“XFOIL User Guide,” open source software, accessed Dec. 12,
2013
, http://web.mit.edu/drela/Public/web/xfoil
32.
Migliore
,
P. G.
, and
Wolfe
,
W. P.
,
1980
, “
The Effects of Flow Curvature on the Aerodynamics of Darrieus Wind Turbines
,” U.S. Department of Energy, Washington, DC,
Technical Report No. ORO-5135-77/7
. 10.2172/5049529
You do not currently have access to this content.