Current land-based gas turbines are growing in size producing higher approach flow Reynolds numbers at the leading edge of turbine nozzles. These vanes are subjected to high intensity large scale turbulence. This present paper reports on the research which significantly expands the parameter range for stagnation region heat transfer augmentation due to high intensity turbulence. Heat transfer measurements were acquired over two constant heat flux test surfaces with large diameter leading edges (10.16 cm and 40.64 cm). The test surfaces were placed downstream from a new high intensity (17.4%) mock combustor and tested over an eight to one range in approach flow Reynolds number for each test surface. Stagnation region heat transfer augmentation for the smaller (ReD = 15,625–125,000) and larger (ReD = 62,500–500,000) leading edge regions ranged from 45% to 81% and 80% to 136%, respectively. These data also include heat transfer distributions over the full test surface compared with the earlier data acquired at six additional inlet turbulence conditions. These surfaces exhibit continued but more moderate acceleration downstream from the stagnation regions and these data are expected to be useful in testing bypass transition predictive approaches. This database will be useful to gas turbine heat transfer design engineers.

References

1.
Van Fossen
,
G. J.
, and
Bunker
,
R. S.
,
2001
, “
Augmentation of Stagnation Region Heat Transfer Due to Turbulence From a DLN Can Combustor
,”
ASME J. Turbomach.
,
123
(
1
), pp.
140
146
.
2.
Medic
,
G.
, and
Durbin
,
P. A.
,
2002
, “
Toward Improved Prediction of Heat Transfer on Turbine Blades
,”
ASME J. Turbomach.
,
124
(
2
), pp.
187
192
.
3.
Gandaparavu
,
P.
, and
Ames
,
F. E.
,
2012
, “
The Influence of Leading Edge Diameter on Stagnation Region Heat Transfer Augmentation Including Effects of Turbulence Level, Scale, and Reynolds Number
,”
ASME J. Turbomach.
,
135
(
1
), p.
011008
.
4.
Zapp
,
G. M.
,
1950
, “
The Effect of Turbulence on Local Heat Transfer Coefficients Around a Cylinder Normal to an Air Stream
,” Master's thesis, Oregon State College, Corvallis, OR.
5.
Smith
,
M. C.
, and
Kuethe
,
A. M.
,
1966
, “
Effects of Turbulence on Laminar Skin Friction and Heat Transfer
,”
Phys. Fluids
,
9
(
12
), pp.
2337
2344
.
6.
Kestin
,
J.
, and
Wood
,
R. T.
,
1971
, “
The Influence of Turbulence on Mass Transfer From Cylinders
,”
ASME J. Heat Transfer
,
93
(
4
), pp.
321
326
.
7.
Lowery
,
G. W.
, and
Vachon
,
R. I.
,
1975
, “
The Effect of Turbulence on Heat Transfer From Heated Cylinders
,”
Int. J. Heat Mass Transfer
,
18
(
11
), pp.
1229
1242
.
8.
Mehendale
,
A. B.
,
Han
,
J. C.
, and
Ou
,
S.
,
1991
, “
Influence of High Mainstream Turbulence on Leading Edge Heat Transfer
,”
ASME J. Heat Transfer
,
113
(
4
), pp.
843
850
.
9.
Hunt
,
J. C. R.
,
1973
, “
A Theory of Turbulent Flow Round Two-Dimensional Bluff Bodies
,”
J. Fluid Mech.
,
61
(
4
), p.
625
.
10.
Britter
,
R. E.
,
Hunt
,
J. C. R.
, and
Mumford
,
J. C.
,
1979
, “
The Distortion of Turbulence by a Circular Cylinder
,”
J. Fluid Mech.
,
92
(02), pp.
269
301
.
11.
Sadeh
,
W. Z.
, and
Sullivan
,
P. P.
,
1980
, “
Turbulence Amplification in Flow About an Airfoil
,”
ASME
Paper No. 80-GT-111.
12.
Rigby
,
D. L.
, and
Van Fossen
,
G. J.
,
1991
, “
Increased Heat Transfer to a Cylindrical Leading Edge Due to Spanwise Variations in the Freestream Velocity
,”
AIAA
Paper No. 91-1739.
13.
Ames
,
F. E.
, and
Moffat
,
R. J.
,
1990
, “
Heat Transfer With High Intensity, Large Scale Turbulence: The Flat Plate Turbulent Boundary Layer and the Cylindrical Stagnation Point
,” Ph.D. dissertation, Stanford University, Stanford, CA, HMT-44.
14.
Van Fossen
,
G. J.
,
Simoneau
,
R. J.
, and
Ching
,
C. Y.
,
1995
, “
Influence of Turbulence Parameters, Reynolds Number, and Body Shape on Stagnation Region Heat Transfer
,”
ASME J. Heat Transfer
,
117
(
3
), pp.
597
603
.
15.
Dullenkopf
,
K.
, and
Mayle
,
R. E.
,
1995
, “
An Account of Free-Stream Turbulence Length Scale on Laminar Heat Transfer
,”
ASME J. Turbomach.
,
117
(
3
), pp.
401
406
.
16.
Sanitjai
,
S.
, and
Goldstein
,
R. J.
,
2001
, “
Effect of Free Stream Turbulence on Local Mass Transfer From a Circular Cylinder
,”
Int. J. Heat Mass Transfer
,
44
(
15
), pp.
2863
2875
.
17.
Oo
,
A. N.
, and
Ching
,
C. Y.
,
2002
, “
Stagnation Line Heat Transfer Augmentation Due to Freestream Vortical Structures and Vorticity
,”
ASME J. Heat Transfer
,
124
(
3
), pp.
583
587
.
18.
Nix
,
A. C.
,
Diller
,
T. E.
, and
Ng
,
W. F.
,
2007
, “
Experimental Measurements and Modeling of the Effects of Large-Scale Freestream Turbulence on Heat Transfer
,”
ASME J. Turbomach.
,
129
(
3
), pp.
542
550
.
19.
Nix
,
A. C.
, and
Diller
,
T. E.
,
2009
, “
Experiments on the Physical Mechanism of Heat Transfer Augmentation by Freestream Turbulence at a Cylinder Stagnation Point
,”
ASME J. Turbomach.
,
131
(
2
), p. 021015.
20.
Gifford
,
A. R.
,
Diller
,
T. E.
, and
Vlachos
,
P. P.
,
2011
, “
The Physical Mechanism of Heat Transfer Augmentation in Stagnation Flow Subject to Freestream Turbulence
,”
ASME J. Heat Transfer
,
133
(
2
), p.
021901
.
21.
Bae
,
S.
,
Lele
,
S. K.
, and
Sung
,
H. G.
,
2002
, “
The Influence of Inflow Disturbances on Stagnation Region Heat Transfer
,”
ASME J. Heat Transfer
,
122
, pp.
258
265
.
22.
Wissink
,
J. G.
, and
Rodi
,
W.
,
2011
, “
Direct Numerical Simulation of Heat Transfer From the Stagnation Region of a Heated Cylinder Affected by an Impinging Wake
,”
J. Fluid Mech.
,
669
, pp.
64
89
.
23.
Chowdhury
,
N. H. K.
, and
Ames
,
F. E.
,
2013
, “
The Response of High Intensity Turbulence in the Presence of Large Stagnation Regions
,”
ASME
Paper No. GT2013-95055.
24.
Blair
,
M. F.
, and
Werle
,
M. J.
,
1980
, “
The Influence of Free-Stream Turbulence on the Zero-Pressure Gradient Fully Turbulent Boundary Layer
,” United Technologies Research Center, East Hartford, CT, UTRC Report No. R80-914388-12.
25.
Ansys
,
2006
, “
FLUENT 6.3 User's Guide
,”
Ansys Inc.
,
Lebanon, NH
.
26.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper No. 92-0439.
27.
Zukauskas
,
A.
, and
Ziugzda
,
J.
,
1985
,
Heat Transfer of a Cylinder in Crossflow
,
Hemisphere
,
New York
.
28.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Weigand
,
B.
,
2005
,
Convective Heat and Mass Transfer
, 4th ed.,
McGraw-Hill
,
New York
.
29.
Frossling
,
N.
,
1958
, “
Evaporation, Heat Transfer, and Velocity Distribution in Two-Dimensional and Rotationally Symmetrical Laminar Boundary-Layer Flow
,” National Advisory Committee for Aeronautics, Washington, DC,
NACA
Report No. NACA-TM-1432.
30.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
You do not currently have access to this content.