Effective internal and external cooling of airfoils is key to maintaining component life for efficient gas turbines. Cooling designs have spanned the range from simple internal convective channels to more advanced double-walls with shaped film-cooling holes. This paper describes the development of an internal and external cooling concept for a state-of-the-art cooled turbine blade. These cooling concepts are based on a review of literature and patents, as well as, interactions with academic and industry turbine cooling experts. The cooling configuration selected and described in this paper is referred to as the “baseline” design, since this design will simultaneously be tested with other more advanced blade cooling designs in a rotating turbine test facility using a “rainbow turbine wheel” configuration. For the baseline design, the leading edge is cooled by internal jet impingement and showerhead film cooling. The midchord region of the blade contains a three-pass serpentine passage with internal discrete V-shaped trip strips to enhance the internal heat transfer coefficient (HTC). The film cooling along the midchord of the blade uses multiple rows of shaped diffusion holes. The trailing edge is internally cooled using jet impingement and externally film cooled through partitioned cuts on the pressure side of the blade.

References

1.
G.E. NASA, Pratt-Whitney, Siemens and Solar-Turbines
,
2016
, “
NETL/PSU Conceptual Design Review Meeting for Baseline START Rotor Blade
,” The Pennsylvania State University, State College, PA.
2.
Barringer
,
M.
,
Coward
,
A.
,
Clark
,
K.
,
Thole
,
K. A.
,
Schmitz
,
J.
,
Wagner
,
J.
,
Alvin
,
M. A.
,
Burke
,
P.
, and
Dennis
,
R.
,
2014
, “
The Design of a Steady Aero Thermal Research Turbine (START) for Studying Secondary Flow Leakages and Airfoil Heat Transfer
,”
ASME
Paper No. GT2014-25570.
3.
Bunker
,
R. S.
,
2006
, “
The Gas Turbine Handbook
,”
U.S. Department of Energy-NETL
, Morgantown, WV, accessed Apr. 26, 2018, http://www.netl.doe.gov/research/coal/energy-systems/turbines/publications/handbook
4.
Downs
,
J. P.
, and
Landis
,
K. K.
,
2009
, “
Turbine Cooling Systems Design: Past, Present and Future
,”
ASME
Paper No. GT2009-59991.
5.
Torbidoni
,
L.
, and
Horlock
,
J.
,
2004
, “
A New Method to Calculate the Coolant Requirements of a High Temperature Gas Turbine Blade
,”
ASME
Paper No. GT2004-53729.
6.
Albert
,
J. E.
, and
Bogard
,
D. G.
,
2013
, “
Measurements of Adiabatic Film and Overall Cooling Effectiveness on a Turbine Vane Pressure Side With a Trench
,”
ASME J. Turbomach.
,
135
(
5
), p.
051007
.
7.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2014
, “
Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole
,”
ASME
Paper No. GT2014-25992.
8.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed.,
CRC Press
, Boca Raton, FL.
9.
Torbidoni
,
L.
, and
Massardo
,
A. F.
,
2004
, “
Analytical Blade Row Cooling Model for Innovative Gas Turbine Cycle Evaluations Supported by Semi-Empirical Air-Cooled Blade Data
,”
ASME J. Eng. Gas Turbines Power
,
126
(
3
), pp.
498
506
.
10.
Dyson
,
T. E.
,
Bogard
,
D. G.
,
Piggush
,
J. D.
, and
Kohli
,
A.
,
2013
, “
Overall Effectiveness for a Film Cooled Turbine Blade Leading Edge With Varying Hole Pitch
,”
ASME J. Turbomach.
,
135
(
3
), p.
031011
.
11.
Chupp
,
R. E.
,
Helms
,
H. E.
, and
McFadden
,
P. W.
,
1969
, “
Evaluation of Internal Heat-Transfer Coefficients for Impingement-Cooled Turbine Airfoils
,”
J. Aircr.
,
6
(
3
), pp.
203
208
.
12.
Andrei
,
L.
,
Carcasci
,
C.
,
Da Soghe
,
R.
,
Facchini
,
B.
,
Maiuolo
,
F.
,
Tarchi
,
L.
, and
Zecchi
,
S.
,
2013
, “
Heat Transfer Measurements in a Leading Edge Geometry With Racetrack Holes and Film Cooling Extraction
,”
ASME J. Turbomach.
,
135
(
3
), p.
031020
.
13.
Carcasci
,
C.
,
Facchini
,
B.
,
Tarchi
,
L.
, and
Ohlendorf
,
N.
,
2014
, “
Experimental Investigation of a Leading Edge Cooling System With Optimized Inclined Racetrack Holes
,”
ASME
Paper No. GT2014-26219.
14.
Martin
,
E. L.
,
Wright
,
L. M.
, and
Crites
,
D. C.
,
2013
, “
Impingement Heat Transfer Enhancement on a Cylindrical, Leading Edge Model With Varying Jet Temperatures
,”
ASME J. Turbomach.
,
135
(
3
), p.
031021
.
15.
Nathan
,
M. L.
,
Dyson
,
T. E.
,
Bogard
,
D. G.
, and
Bradshaw
,
S. D.
,
2013
, “
Adiabatic and Overall Effectiveness for the Showerhead Film Cooling of a Turbine Vane
,”
ASME J. Turbomach.
,
136
(
3
), p.
031005
.
16.
Anderson
,
J. B.
,
Winka
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
2015
, “
Evaluation of Superposition Predictions for Showerhead Film Cooling on a Vane
,”
ASME J. Turbomach.
,
137
(
4
), p.
041010
.
17.
Wadia
,
A. R.
, and
Nealy
,
D. A.
,
1988
, “
Experimental Simulation of Turbine Airfoil Leading Edge Film Cooling
,”
ASME J. Turbomach.
,
110
(
2
), pp.
226
232
.
18.
Webb
,
A. L.
, and
Isburgh
,
A. M.
,
2001
, “
Airfoil Component Having Internal Cooling and Method of Cooling
,” U.S. Patent No.
6,186,741
.https://patents.justia.com/patent/6186741
19.
Lin
,
Y.-L.
,
Shih
,
T. I.-P.
,
Stephens
,
M. A.
, and
Chyu
,
M. K.
,
2000
, “
A Numerical Study of Flow and Heat Transfer in a Smooth and a Ribbed U-Duct With and Without Rotation
,”
ASME J. Heat Transfer
,
123
(
2
), pp. 219–232.
20.
Liang
,
G.
,
2008
, “
Turbine Blade Cooling System With Bifurcated Mid-Chord Cooling Chamber
,” Siemens Energy Inc., Houston, TX, U.S. Patent No.
7,413,407
.https://patents.google.com/patent/US7413407B2/en
21.
Coletti
,
F.
,
Verstraete
,
T.
,
Bulle
,
J.
,
Van der Wielen
,
T.
,
Van den Berge
,
N.
, and
Arts
,
T.
,
2013
, “
Optimization of a U-Bend for Minimal Pressure Loss in Internal Cooling Channels—Part II: Experimental Validation
,”
ASME J. Turbomach.
,
135
(
5
), p.
051016
.
22.
Verstraete
,
T.
,
Coletti
,
F.
,
Bulle
,
J.
,
Vanderwielen
,
T.
, and
Arts
,
T.
,
2013
, “
Optimization of a U-Bend for Minimal Pressure Loss in Internal Cooling Channels—Part I: Numerical Method
,”
ASME J. Turbomach.
,
135
(
5
), p.
051015
.
23.
Ledezma
,
G. A.
, and
Bunker
,
R. S.
,
2013
, “
The Optimal Distribution of Chordwise Rib Fin Arrays for Blade Tip Cap Underside Cooling
,”
ASME J. Turbomach.
,
136
(
1
), p.
011007
.
24.
Ledezma
,
G. A.
, and
Bunker
,
R. S.
,
2014
, “
The Optimal Distribution of Pin Fins for Blade Tip Cap Underside Cooling
,”
ASME J. Turbomach.
,
137
(
1
), p.
011002
.
25.
Wright
,
L. M.
,
Fu
,
W.-L.
, and
Han
,
J.-C.
,
2004
, “
Thermal Performance of Angled, V-Shaped, and W-Shaped Rib Turbulators in Rotating Rectangular Cooling Channels (AR= 4: 1)
,”
ASME J. Turbomach.
,
126
(
4
), pp.
604
614
.
26.
Bunker
,
R. S.
,
2013
, “
Gas Turbine Cooling: Moving From Macro to Micro Cooling
,”
ASME
Paper No. GT2013-94277.
27.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2017
, “
Effect of In-Hole Roughness on Film Cooling From a Shaped Hole
,”
ASME J. Turbomach.
,
139
(
3
), p.
031004
.
28.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2017
, “
Thermal Field Measurements for a Shaped Hole at Low and High Freestream Turbulence Intensity
,”
ASME J. Turbomach.
,
139
(
2
), p.
021012
.
29.
Metzger
,
D.
,
Shepard
,
W.
, and
Haley
,
S.
,
1986
, “
Row Resolved Heat Transfer Variations in Pin-Fin Arrays Including Effects of Non-Uniform Arrays and Flow Convergence
,”
ASME
Paper No. 86-GT-132.
30.
Palumbo
,
M. A.
,
Mongillo
,
D. J.
, Jr.
, and
Zelesky
,
M. F.
,
2001
, “
Coolable Airfoil Structure
,” United Technologies Corporation, Farmington, CT, U.S. Patent No.
6,179,565
.https://patents.google.com/patent/US6179565B1/en
31.
Mongillo
,
D. J.
, Jr.
,
Chon
,
Y. H.
, and
Kulak
,
R.
,
2008
, “
Fanned Trailing Edge Teardrop Array
,” United Technologies Corporation, Farmington, CT, U.S. Patent No.
7,377,748
.https://patents.google.com/patent/US20070224033
32.
Manning
,
R. F.
, and
Taslim
,
M. E.
,
2003
, “
Crossover Cooled Airfoil Trailing Edge
,” General Electric, Boston, MA, U.S. Patent No.
6,607,356
.https://patents.google.com/patent/US6607356
33.
Lee
,
C. P.
, and
Durgin
,
G. A.
,
2001
, “
Multiple Impingement Airfoil Cooling
,” General Electric, Boston, MA, U.S. Patent No.
6,174,134
.https://patents.google.com/patent/US6174134
34.
Liang
,
G.
,
2007
, “
Turbine Airfoil Trailing Edge Cooling System With Segmented Impingement Ribs
,” Siemens Energy Inc., Houston, TX, U.S. Patent No.
7,270,515
.https://patents.google.com/patent/US7270515B2/en
35.
Lee
,
C. P.
,
Heneveld
,
B. E.
,
Brown
,
G. E.
, and
Klinger
,
J.
,
2015
, “
Trailing Edge Cooling Using Angled Impingement on Surface Enhanced With Cast Chevron Arrangements
,” U.S. Patent No.
9,039,371
.https://patents.google.com/patent/US20150118034A1/en
36.
Taslim
,
M. E.
, and
Fong
,
M. K. H.
,
2013
, “
Experimental and Numerical Crossover Jet Impingement in a Rib-Roughened Airfoil Trailing-Edge Cooling Channel
,”
ASME J. Turbomach.
,
135
(
5
), p.
051014
.
37.
Taslim
,
M. E.
, and
Nongsaeng
,
A.
,
2011
, “
Experimental and Numerical Cross-Over Jet Impingement in an Airfoil Trailing-Edge Cooling Channel
,”
ASME J. Turbomach.
,
133
(
4
), p.
041009
.
38.
Armellini
,
A.
,
Coletti
,
F.
,
Arts
,
T.
, and
Scholtes
,
C.
,
2009
, “
Aerothermal Investigation of a Rib-Roughened Trailing Edge Channel With Crossing-Jets—Part I: Flow Field Analysis
,”
ASME J. Turbomach.
,
132
(
1
), p.
011009
.
39.
Coletti
,
F.
,
Armellini
,
A.
,
Arts
,
T.
, and
Scholtes
,
C.
,
2010
, “
Aerothermal Investigation of a Rib-Roughened Trailing Edge Channel With Crossing Jets—Part II: Heat Transfer Analysis
,”
ASME J. Turbomach.
,
133
(
3
), p.
031024
.
40.
Chyu
,
M. K.
,
Siw
,
S. C.
, and
Moon
,
H. K.
,
2009
, “
Effects of Height-to-Diameter Ratio of Pin Element on Heat Transfer From Staggered Pin-Fin Arrays
,”
ASME
Paper No. GT2009-59814.
41.
Cunha
,
F. J.
,
Dahmer
,
M. T.
, and
Chyu
,
M. K.
,
2005
, “
Analysis of Airfoil Trailing Edge Heat Transfer and Its Significance in Thermal-Mechanical Design and Durability
,”
ASME J. Turbomach.
,
128
(
4
), pp. 738–746.
42.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Adv. Heat Transfer
,
7
, p.
321
.
43.
Fiala
,
N. J.
,
Jaswal
,
I.
, and
Ames
,
F. E.
,
2009
, “
Letterbox Trailing Edge Heat Transfer: Effects of Blowing Rate, Reynolds Number, and External Turbulence on Heat Transfer and Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
132
(
1
), p.
011017
.
44.
Fiala
,
N. J.
,
Johnson
,
J. D.
, and
Ames
,
F. E.
,
2010
, “
Aerodynamics of a Letterbox Trailing Edge: Effects of Blowing Rate, Reynolds Number, and External Turbulence on Aerodynamic Losses and Pressure Distribution
,”
ASME J. Turbomach.
,
132
(
4
), p.
041011
.
45.
Ling
,
J.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2015
, “
The Effect of Land Taper Angle on Trailing Edge Slot Film Cooling
,”
ASME J. Turbomach.
,
137
(
7
), p.
071003
.
46.
Horbach
,
T.
,
Schulz
,
A.
, and
Bauer
,
H. J.
,
2011
, “
Trailing Edge Film Cooling of Gas Turbine Airfoils—External Cooling Performance of Various Internal Pin Fin Configurations
,”
ASME J. Turbomach.
,
133
(
4
), p.
041006
.
You do not currently have access to this content.