Abstract

This article presents the large-eddy simulation (LES) of a low-pressure turbine (LPT) nozzle guide vane (NGV) for different Reynolds (Re) and Mach (Ma) numbers with or without inlet turbulence prescribed. The analysis is based on a slice of an LPT blading representative of a midspan flow, where secondary flows, hub, and shroud effects are lower. The characteristic Re of the LPT can vary by a factor of four between take-off and cruise conditions. In addition, the LPT operates at different Ma values, and the incident flow can have significant levels of turbulence due to upstream blade wakes. This article investigates numerically using LES the flow around an LPT blading with three different Reynolds number Re = 175,000 (cruise), 280,000 (mid-level altitude), and 500,000 (take-off) keeping the same characteristic Mach number Ma = 0.2 and three different Mach number Ma = 0.2, 0.5, and 0.8 keeping the same Reynolds number Re = 280,000. These different simulations are performed with 0% freestream turbulence (FST) followed by inlet turbulence (6% FST). The study focuses on the influence of these three parameters (Re, Ma, and upstream turbulence) on different flow characteristics: pressure distribution around the blade, near-wall flow behavior, loss generation, and turbulent kinetic energy (TKE) budget. The results show an earlier boundary layer separation on the aft region of the blade suction side when the Re is increased, while the increase of the Ma delays separation, similar to freestream turbulence. The TKE budget led on the different cases shows the predominant effect of the turbulent production and diffusion in the wake, the axial evolution of these different terms being relatively insensitive to Re and Ma.

References

1.
Hourmouziadis
,
J.
,
1989
, “
Aerodynatmic Design of Low Pressure Turbines
,”
AGARD Lecture Ser.
,
167
(
167
), pp.
120
133
.
2.
Pichler
,
R.
,
Sandberg
,
R. D.
, and
Michelassi
,
V.
,
2016
, “
Assessment of Grid Resolution Requirements for Accurate Simulation of Disparate Scales of Turbulent Flow in Low-Pressure Turbines
,”
Proceedings of the ASME Turbo Expo
,
Seoul, South Korea
,
June 13–17
, pp.
120
132
.
3.
Tucker
,
P. G.
,
Eastwood
,
S.
,
Klostermeier
,
C.
,
Jefferson-Loveday
,
R.
,
Tyacke
,
J.
, and
Liu
,
Y.
,
2010
, “
Hybrid LES Approach for Practical Turbomachinery Flows: Part 2-Further Applications
,”
ASME Turbo Expo 2010: Power for Land, Sea and Air
,
Glasgow, UK
,
June 14–18
, p.
2
.
4.
Simon
,
F.
, and
Ashpis
,
D.
,
1996
, “
Progress in Modeling of Laminar to Turbulent Transition on Turbine Vanes and Blades
,”
Technical Report, Report No. NASA TM 107180
,
National Aeronautics and Space Administration
,
Washington, DC
.
5.
Hodson
,
H. P.
, and
Howell
,
R. J.
,
2000
, “
Unsteady Flow: Its Role in the Low Pressure Turbine
,”
The 9th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines (ISUAAT) and Legendre Lecture Series: Ecole Centrale de Lyon
,
Lyon, France
,
Sept. 4–8
, pp.
1
33
.
6.
LaGraff
,
J.
, and
Ashpis
,
D.
,
1998
, “
Minnowbrook II 1997 Workshop on Boundary Layer Transition in Turbomachines
,” Nasa Contractor Report, Aug. 20–23, Syracuse University Minnowbrook Conference Center, New York.
7.
Schulte
,
V.
, and
Hodson
,
H. P.
,
2011
, “
Unsteady Wake-Induced Boundary Layer Transition in High Lift LP Turbines
,”
ASME J. Turbomach.
,
120
(
1
), pp.
28
35
.
8.
Hodson
,
H. P.
, and
Howell
,
R. J.
,
2005
, “
Blade Row Interaction, Transition, and High-Lift Airfoils in Low-Pressure Turbine
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
71
98
.
9.
Vera
,
M.
,
Zhang
,
X. F.
,
Hodson
,
H.
, and
Harvey
,
N.
,
2007
, “
Separation and Transition Control on An AFT-Loaded Ultra-High-Lift LP Turbine Blade at Low Reynolds Numbers: High-Speed Validation
,”
ASME J. Turbomach.
,
128
(
3
), pp.
517
527
.
10.
Montomoli
,
F.
,
Hodson
,
H.
, and
Haselbach
,
F.
,
2010
, “
Effect of Roughness and Unsteadiness on the Performance of a New Low Pressure Turbine Blade at Low Reynolds Numbers
,”
ASME J. Turbomach.
,
132
(
3
), pp.
132
141
.
11.
Michelassi
,
V.
,
Chen
,
L.-W.
,
Pichler
,
R.
, and
Sandberg
,
R. D.
,
2014
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines Part II: Effect of Inflow Disturbances
,”
ASME J. Turbomach.
,
137
(
7
), pp.
122
134
.
12.
Hodson
,
H. P.
, and
Howell
,
R. J.
,
2005
, “
The Role of Transition in High-Lift Low-Pressure Turbines for Aeroengines
,”
Prog. Aerosp. Sci.
,
41
(
6
), pp.
419
454
.
13.
Prakash
,
C.
,
Cherry
,
D. G.
,
Shin
,
H. W.
,
MacHnaim
,
J.
,
Dailey
,
L.
,
Beacock
,
R.
,
Halstead
,
D.
,
Wadia
,
A. R.
,
Guillot
,
S.
, and
Ng
,
W. F.
,
2008
, “
Effect of Loading Level and Distribution on LPT Losses
,”
Proceedings of the ASME Turbo Expo
,
Berlin, Germany
,
June 9–13
, pp.
917
925
.
14.
Kuerner
,
M.
,
Reichstein
,
G. A.
,
Schrack
,
D.
,
Rose
,
M. G.
,
Staudacher
,
S.
,
Gier
,
J.
, and
Engel
,
K.
,
2012
, “
Low Pressure Turbine Secondary Vortices: Reynolds Lapse Effect
,”
ASME J. Turbomach.
,
134
(
6
), p.
061022
.
15.
Vázquez
,
R.
,
Antoranz
,
A.
,
Cadrecha
,
D.
, and
Arma nanzas
,
L.
,
2006
, “
The Influence of Reynolds Number, Mach Number and Incidence Effects on Loss Production in Low Pressure Turbine Airfoils
,”
ASME Turbo Expo 2006: Power for Land, Sea, and Air Volume 6: Turbomachinery, Parts A and B
,
Barcelona, Spain
,
May 8–11
,
ASME
, pp.
949
960
.
16.
Matsuura
,
K.
, and
Kato
,
C.
,
2006
, “
Large-Eddy Simulation of Compressible Transitional Cascade Flows With and Without Incoming Free-Stream Turbulence
,”
JSME Int. J.
,
49
(
3
), pp.
660
669
.
17.
Chernobrovkin
,
A.
, and
Lakshminarayana
,
B.
,
1999
, “
Turbulence Modeling and Computation of Viscous Transitional Flows for Low Pressure Turbines
,”
J. Fluids Eng.
,
4
, pp.
555
566
.
18.
Suzen
,
Y. B.
,
Huang
,
P. G.
,
Hultgren
,
L. S.
, and
Ashpis
,
D. E.
,
2003
, “
Predictions of Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions Using an Intermittency Transport Equation
,”
ASME J. Turbomach.
,
125
(
3
), pp.
455
464
.
19.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
15
(
2
), pp.
301
314
.
20.
Menter
,
F. R.
,
Langtry
,
R.
,
Völker
,
S.
, and
Huang
,
P. G.
,
2005
, “
Transition Modelling for General Purpose CFD Codes
,”
Procedings of the ERCOFTAC International Symposium on Engineering Turbulence Modelling and Measurements; ETMM6
,
Sardinia, Italy
,
May 23–25
, pp.
23
46
.
21.
Sagaut
,
P.
,
2006
,
Large Eddy Simulation for Incompressible Flows: An Introduction
,
Springer Science
,
New York
.
22.
Tucker
,
P. G.
,
2011
, “
Computation of Unsteady Turbomachinery Flows: Part 2—LES and Hybrids
,”
Prog. Aerosp. Sci.
,
47
(
7
), pp.
546
569
.
23.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
,
3
(
7
), pp.
1760
1765
.
24.
Piomelli
,
U.
,
1999
, “
Large-Eddy Simulation: Achievements and Challenges
,”
Prog. Aerosp. Sci.
,
35
(
4
), pp.
335
362
.
25.
Lardeau
,
S.
,
Leschziner
,
M.
, and
Zaki
,
T.
,
2012
, “
Large Eddy Simulation of Transitional Separated Flow Over a Flat Plate and a Compressor Blade
,”
Flow Turbul. Combust.
,
88
(
1
), pp.
19
44
.
26.
Michelassi
,
V.
,
Wissink
,
J.
, and
Rodi
,
W.
,
2002
, “
Analysis of DNS and LES of Flow in a Low Pressure Turbine Cascade With Incoming Wakes and Comparison With Experiments
,”
Flow Turbul. Combust.
,
69
(
3–4
), pp.
295
330
.
27.
Michelassi
,
V.
,
Wissink
,
J. G.
,
Fröhlich
,
J.
, and
Rodi
,
W.
,
2003
, “
Large-Eddy Simulation of Flow Around Low-Pressure Turbine Blade With Incoming Wakes
,”
AIAA J.
,
41
(
11
), pp.
2143
2153
.
28.
Sarkar
,
S.
,
2008
, “
Identification of Flow Structures on a LP Turbine Blade Due to Periodic Passing Wakes
,”
ASME J. Fluids Eng.
130
(
6
), p.
061103
.
29.
Schuler
,
P.
,
Dullenkopf
,
K.
, and
Bauer
,
H.-J.
,
2011
, “
Investigation of the Influence of Different Rim Seal Geometries in a Low-Pressure Turbine
,”
Volume 7: Turbomachinery, Parts A, B, and C
,
Vancouver, British Columbia, Canada
,
June 6–10
, pp.
715
729
.
30.
Schuler
,
P.
,
2016
, “
Einfluss der Rotor-Stator-Dichtung auf die Turbinenaerodynamik und Seitenwandkuhlung
,”
Ph.D. thesis
,
Technical University Karlsruhe
,
Karlsruhe, Germany
.
31.
Michelassi
,
V.
,
Chen
,
L.
,
Pichler
,
R.
,
Sandberg
,
R.
, and
Bhaskaran
,
R.
,
2016
, “
High-Fidelity Simulations of Low-Pressure Turbines: Effect of Flow Coefficient and Reduced Frequency on Losses
,”
ASME J. Turbomach.
,
138
(
11
), pp.
121
133
.
32.
Lengani
,
D.
,
Simoni
,
D.
,
Pichler
,
R.
,
Sandberg
,
R. D.
,
Michelassi
,
V.
, and
Bertini
,
F.
,
2018
, “
Identification and Quantification of Losses in a LPT Cascade by POD Applied to LES Data
,”
Int. J. Heat Fluid Flow
,
70
(
1
), pp.
28
40
.
33.
Wu
,
X.
, and
Durbin
,
P. A.
,
2001
, “
Evidence of Longitudinal Vortices Evolved From Distorted Wakes in a Turbine Passage
,”
J. Fluid Mech.
,
446
(
1
), pp.
199
228
.
34.
Sedov
,
L. I.
,
Friedman
,
M.
,
Holt
,
M.
, and
Cole
,
J. D.
,
1961
,
Similarity and Dimensional Methods in Mechanics
,
CRC Press
, Boca Raton, FL.
35.
Sandberg
,
R. D.
, and
Michelassi
,
V.
,
2019
, “
The Current State of High-Fidelity Simulations for Main Gas Path Turbomachinery Components and Their Industrial Impact
,”
Flow Turbul. Combust.
,
102
(
4
), pp.
797
848
.
36.
Sharma
,
O. P.
,
Pickett
,
G. F.
, and
Ni
,
R. H.
,
1992
, “
Assessment of Unsteady Flows in Turbines
,”
ASME J. Turbomach.
,
114
(
1
), pp.
79
90
.
37.
Sharma
,
O. P.
,
Ni
,
R. H.
, and
Tanrikut
,
S.
,
1994
, “
Unsteady Flows in Turbines—Impact on Design Procedure
,” AGARD Lecture Series No. 195,
Turbomachinery Design Using CFD
,
East Hartford, CT
,
May 1–4
, pp.
1
44
.
38.
Michelassi
,
V.
,
Martelli
,
F.
,
Dénos
,
D. J.
,
Arts
,
T.
, and
Sieverding
,
C. H.
,
1999
, “
Unsteady Heat Transfer in Stator-Rotor Interaction by Two-Equation Turbulence Model
,”
ASME J. Turbomach.
,
121
(
3
), pp.
436
447
.
39.
Wu
,
X.
,
Jacobs
,
R.
,
Hunt
,
J. C.
, and
Durbin
,
P. A.
,
1999
, “
Simulation of Boundary Layer Transition Induced by Periodically Passing Wakes
,”
J. Fluid. Mech.
,
398
(
1
), pp.
109
153
.
40.
Coull
,
J. D.
, and
Hodson
,
H. P.
,
2011
, “
Unsteady Boundary-Layer Transition in Low-Pressure Turbines
,”
J. Fluid Mech.
,
681
(
1
), pp.
370
410
.
41.
Gicquel
,
L. Y. M.
,
Gourdain
,
N.
,
Boussuge
,
J.-F.
,
Deniau
,
H.
,
Staffelbach
,
G.
,
Wolf
,
P.
, and
Poinsot
,
T.
,
2011
, “
High Performance Parallel Computing of Flows in Complex Geometries
,”
Comptes Rendus Mécanique
,
339
(
2–3
), pp.
104
124
.
42.
You
,
D.
,
Wang
,
M.
,
Moin
,
P.
, and
Mittal
,
R.
,
2006
, “
Effects of Tip-Gap Size on the Tip-Leakage Flow in a Turbomachinery Cascade
,”
Phys. Fluids
,
18
(
10
), pp.
305
316
.
43.
Gourdain
,
N.
,
Sicot
,
F.
,
Duchaine
,
F.
, and
Gicquel
,
L.
,
2014
, “
Large Eddy Simulation of Flows in Industrial Compressors: A Path From 2015 to 2035
,”
Phil. Trans. R. Soc. A
,
372
(
2022
), p.
20130323
.
44.
Piomelli
,
U.
,
2008
, “
Wall-Layer Models for Large-Eddy Simulations
,”
Prog. Aerosp. Sci.
,
44
(
6
), pp.
437
446
.
45.
Pichler
,
R.
,
Zhao
,
Y.
,
Sandberg
,
R. D.
,
Michelassi
,
V.
,
Pacciani
,
R.
,
Marconcini
,
M.
, and
Arnone
,
A.
,
2018
, “
LES and RANS Analysis of the End-Wall Flow in a Linear Low Pressure Turbine Cascade With Variable Inlet Conditions, Part I: Flow and Secondary Vorticity Fields
,”
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
Oslo, Norway
,
June 11–15
,
ASME
, pp.
146
157
.
46.
Wissink
,
J. G.
, and
Rodi
,
W.
,
2006
, “
Direct Numerical Simulation of Flow and Heat Transfer in a Turbine Cascade With Incoming Wakes
,”
J. Fluid Mech.
,
569
(
1
), pp.
209
247
.
47.
Lengani
,
D.
,
Simoni
,
D.
,
Pichler
,
R.
,
Sandberg
,
R.
, and
Michelassi
,
V.
,
2019
, “
On the Identification and Decomposition of the Unsteady Losses in a Turbine Cascade
,”
ASME J. Turbomach.
,
141
(
3
), pp.
111
121
.
48.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Vol. 1
,
Cambridge University Press
,
Cambridge
.
49.
Smirnov
,
A.
,
Shi
,
S.
, and
Celik
,
I.
,
2001
, “
Random Flow Generation Technique for Large Eddy Simulations and Particle-Dynamics Modeling
,”
ASME J. Fluids Eng.
,
123
(
2
), pp.
359
371
.
50.
Fontaneto
,
F.
,
2014
, “
Aero-Thermal Performance of a Film-Cooled High Pressure Turbine Blade/Vane: A Test Case for Numerical Codes Validation
,”
Ph.D. thesis
,
University of Bergamo
,
Bergamo, Italy
.
51.
Troth
,
L. S.
,
2017
, “
Multi-Physics Coupled Simulation of Gas Turbine
,”
Ph.D. thesis
,
Cerfacs
,
Toulouse, France
.
52.
Passot
,
T.
, and
Pouquet
,
A.
,
1987
, “
Numerical Simulation of Compressible Homogeneous Flows in the Turbulent Regime
,”
J. Fluid Mech.
,
181
(
1
), pp.
441
466
.
53.
Colin
,
O.
, and
Rudgyard
,
M.
,
2000
, “
Development of High-Order Taylor-Galerkin Schemes for LES
,”
J. Comput. Phys.
,
162
(
2
), pp.
338
371
.
54.
Lax
,
P. D.
,
1957
, “
Hyperbolic Systems of Conservation Laws II
,”
Commun. Pure Appl. Math.
,
10
(
4
), pp.
537
566
.
55.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbul. Combust.
,
62
(
3
), pp.
183
200
.
56.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
Volume 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; IGTI Scholar Award; General
,
Orlando, FL
,
June 3–6
, pp.
115
143
.
57.
Abu-Ghannam
,
B. J.
, and
Shaw
,
R.
,
1980
, “
Natural Transition of Boundary Layers—The Effects of Turbulence, Pressure Gradient, and Flow History
,”
J. Mech. Eng. Sci.
,
22
(
5
), pp.
213
228
.
58.
Gourdain
,
N.
,
2015
, “
Prediction of the Unsteady Turbulent Flow in an Axial Compressor Stage. Part 2: Analysis of Unsteady RANS and LES Data
,”
Comput. Fluids
,
106
(
1
), pp.
119
129
. .
59.
Muppidi
,
S.
, and
Mahesh
,
K.
,
2012
, “
Direct Numerical Simulations of Roughness-Induced Transition in Supersonic Boundary Layers
,”
J. Fluid Mech.
,
693
(
1
), pp.
28
56
.
60.
Michelassi
,
V.
, and
Wissink
,
J. G.
,
2015
, “
Turbulent Kinetic Energy Production in the Vane of a Low-Pressure Linear Turbine Cascade With Incoming Wakes
,”
Int. J. Rotating Mach.
,
2015
(
2
), p.
650783
.
61.
Wheeler
,
A. P. S.
,
Sandberg
,
R.
,
Sandham
,
N. D.
,
Pichler
,
R.
,
Michelassi
,
V.
, and
Laskowski
,
G.
,
2016
, “
Direct Numerical Simulations of a High-Pressure Turbine Vane Flow
,”
ASME J. Turbomach.
,
138
(
7
), p.
071003
.
62.
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
,
Bertini
,
F.
, and
Michelassi
,
V.
,
2017
, “
Accurate Estimation of Profile Losses and Analysis of Loss Generation Mechanisms in a Turbine Cascade
,”
ASME J. Turbomach.
,
139
(
12
), pp.
121
132
.
63.
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2017
, “
A POD-Based Procedure for the Split of Unsteady Losses of an LPT Cascade
,”
Int. J. Turbomach. Propul. Power
,
2
(
4
), p.
17
.
64.
Bogey
,
C.
, and
Bailly
,
C.
,
2009
, “
Turbulence and Energy Budget in a Self-Preserving Round Jet: Direct Evaluation Using Large Eddy Simulation
,”
J. Fluid Mech.
,
627
(
2
), pp.
129
160
.
65.
Pichler
,
R.
,
Sandberg
,
R. D.
,
Michelassi
,
V.
, and
Bhaskaran
,
R.
,
2016
, “
Investigation of the Accuracy of RANS Models to Predict the Flow Through a Low-Pressure Turbine
,”
ASME J. Turbomach.
,
138
(
12
), pp.
121
132
.
66.
Sideridis
,
A.
,
Yakinthos
,
K.
, and
Goulas
,
A.
,
2011
, “
Turbulent Kinetic Energy Balance Measurements in the Wake of a Low-Pressure Turbine Blade
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
212
225
.
67.
Vreman
,
B.
,
Geurts
,
B.
, and
Kuerten
,
H.
,
1997
, “
Large-Eddy Simulation of the Turbulent Mixing Layer
,”
J. Fluid Mech.
,
339
(
1
), pp.
357
390
.
68.
Le Ribault
,
C.
,
Sarkar
,
S.
, and
Stanley
,
S.
,
1999
,
Large Eddy Simulation of a Plane Jet
,”
Phys. Fluids
,
11
(
10
), p.
3069
.
You do not currently have access to this content.