Abstract

The performance of film cooling is influenced by many parameters, and the nonuniform flow caused by the internal cooling system is found to largely affect the film cooling, which further complicates the in-hole flow and draws new difficulties in predicting the cooling performance. In this study, we find a very interesting phenomenon that there always exists an in-hole interface, on which distributions of many parameters, including the velocity and kinetic energy, are seldom affected by the mainstream. The existence of this specific interface can be observed for both cylindrical and shaped film cooling holes under most operating conditions. The theoretical analysis of this interface is conducted in this study based on the characteristic decomposition of the Navier–Stokes equation, and this interface is named as the characteristic interface. Theoretical analysis and numerical observations suggest the film cooling system can be simplified to two weakly coupled regions separated by this interface. It also explains why existing source term models for film cooling may fail. Based on these findings, a new prediction model is developed, which uses the convolutional neural networks (CNN) model to predict the boundary conditions on the characteristic interface. The new model outperforms existing source term models and yields similar accuracy as full-mesh computational fluid dynamics (CFD), while reducing the computational cost by one order of magnitude. This model is further evaluated in large eddy simulation (LES), showing moderate success. To sum up, the current work reports the characteristic interface phenomenon in the film cooling hole, based on which a new and efficient prediction model is developed and verified.

References

1.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat. Transfer.
,
127
(
4
), pp.
441
453
.
2.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power.
,
22
(
2
), pp.
249
270
.
3.
Tartinville
,
B.
, and
Hirsch
,
C.
,
2008
, “
Modelling of Film Cooling for Turbine Blade Design
,”
Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air
,
American Society of Mechanical Engineers
, Paper No. GT2008-50316.
4.
Andrei
,
L.
,
Innocenti
,
L.
,
Andreini
,
A.
,
Facchini
,
B.
, and
Winchler
,
L.
,
2015
, “
Film Cooling Modelling for Gas Turbine Nozzles and Blades: Validation and Application
,”
Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
,
American Society of Mechanical Engineers
, Paper No. GT2015-43345.
5.
Andreini
,
A.
,
Da Soghe
,
R.
,
Facchini
,
B.
,
Mazzei
,
L.
,
Colantuoni
,
S.
, and
Turrini
,
F.
,
2014
, “
Local Source Based CFD Modeling of Effusion Cooling Holes: Validation and Application to an Actual Combustor Test Case
,”
ASME J. Eng. Gas. Turbines. Power.
,
136
(
1
), p.
011506
.
6.
Zhang
,
Y. F.
, and
Wang
,
K.
,
2017
, “
A Study of Source Term Model for Full Coverage Film Cooling Simulation
,”
Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
American Society of Mechanical Engineers
, Paper No. GT2017-64607.
7.
Burdet
,
A.
,
Abhari
,
R. S.
, and
Rose
,
M. G.
,
2006
, “
Modeling of Film Cooling—Part II: Model for Use in Three-Dimensional Computational Fluid Dynamics
,”
ASME J. Turbomach.
,
129
(
2
), pp.
221
231
.
8.
Bernsdorf
,
S.
,
Rose
,
M. G.
, and
Abhari
,
R. S.
,
2005
, “
Modeling of Film Cooling—Part I: Experimental Study of Flow Structure
,”
ASME J. Turbomach.
,
128
(
1
), pp.
141
149
.
9.
Kampe
,
T. a. d.
, and
Völker
,
S.
,
2012
, “
A Model for Cylindrical Hole Film Cooling—Part II: Model Formulation, Implementation and Results
,”
ASME J. Turbomach.
,
134
(
6
), p.
061011
.
10.
Kampe
,
T. a. d.
,
Völker
,
S.
, and
Zehe
,
F.
,
2012
, “
A Model for Cylindrical Hole Film Cooling—Part I: A Correlation for Jet-Flow With Application to Film Cooling
,”
ASME J. Turbomach.
,
134
(
6
), p.
061010
.
11.
Chen
,
Z.
,
Zhang
,
Z.
,
Li
,
Y.
,
Su
,
X.
, and
Yuan
,
X.
,
2019
, “
Vortex Dynamics Based Analysis of Internal Crossflow Effect on Film Cooling Performance
,”
Int. J. Heat. Mass. Transfer.
,
145
, p.
118757
.
12.
Gritsch
,
M.
,
Saumweber
,
C.
,
Schulz
,
A.
,
Wittig
,
S.
, and
Sharp
,
E.
,
2000
, “
Effect of Internal Coolant Crossflow Orientation on the Discharge Coefficient of Shaped Film-Cooling Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
146
152
.
13.
Bunker
,
R. S.
, and
Bailey
,
J. C.
,
2001
, “
Film Cooling Discharge Coefficient Measurements in a Turbulated Passage With Internal Crossflow
,”
ASME J. Turbomach.
,
123
(
4
), pp.
774
780
.
14.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
, “
Effect of Internal Coolant Crossflow on the Effectiveness of Shaped Film-Cooling Holes
,”
ASME J. Turbomach.
,
125
(
3
), pp.
547
554
.
15.
Saumweber
,
C.
, and
Schulz
,
A.
,
2008
, “
Comparison of the Cooling Performance of Cylindrical and Fan-Shaped Cooling Holes With Special Emphasis on the Effect of Internal Coolant Cross-Flow
,”
Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air
,
American Society of Mechanical Engineers
, Paper No. GT2008-51036.
16.
Kohli
,
A.
, and
Thole
,
K. A.
,
1998
, “
Entrance Effects on Diffused Film-Cooling Holes
,”
Proceedings of the ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition
,
American Society of Mechanical Engineers
, Paper No. 98-GT-402.
17.
McClintic
,
J. W.
,
Anderson
,
J. B.
,
Bogard
,
D. G.
,
Dyson
,
T. E.
, and
Webster
,
Z. D.
,
2018
, “
Effect of Internal Crossflow Velocity on Film Cooling Effectiveness—Part I: Axial Shaped Holes
,”
ASME J. Turbomach.
,
140
(
1
), p.
011003
.
18.
McClintic
,
J. W.
,
Fox
,
D. W.
,
Jones
,
F. B.
,
Bogard
,
D. G.
,
Dyson
,
T. E.
, and
Webster
,
Z. D.
,
2019
, “
Flow Physics of Diffused-Exit Film Cooling Holes Fed by Internal Crossflow
,”
ASME J. Turbomach.
,
141
(
3
), p.
031010
.
19.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Effect of Geometry Variations on the Cooling Performance of Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), p.
061008
.
20.
Schroeder
,
R.
, and
Thole
,
K. A.
,
2014
, “
Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole
,”
Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
American Society of Mechanical Engineers
, Paper No. GT2014-25992.
21.
Fraas
,
M.
,
Glasenapp
,
T.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2019
, “
Film Cooling Measurements for a Laidback Fan-Shaped Hole: Effect of Coolant Crossflow on Cooling Effectiveness and Heat Transfer
,”
ASME J. Turbomach.
,
141
(
4
), p.
041006
.
22.
Roache
,
P. J.
,
1997
, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Rev. Fluid. Mech.
,
29
(
1
), pp.
123
160
.
23.
Jones
,
F. B.
,
Fox
,
D. W.
, and
Bogard
,
D. G.
,
2019
, “
Evaluating the Usefulness of Rans in Film Cooling
,”
Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
,
American Society of Mechanical Engineers
, Paper No. 10.1115/GT2019-91788.
24.
Poinsot
,
T. J.
, and
Lele
,
S. K.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.
25.
Paszke
,
A.
,
Gross
,
S.
,
Massa
,
F.
,
Lerer
,
A.
,
Bradbury
,
J.
,
Chanan
,
G.
,
Killeen
,
T.
,
Lin
,
Z.
,
Gimelshein
,
N.
,
Antiga
,
L.
,
Desmaison
,
A.
,
Kopf
,
A.
,
Yang
,
E.
,
DeVito
,
Z.
,
Raison
,
M.
,
Tejani
,
A.
,
Chilamkurthy
,
S.
,
Steiner
,
B.
,
Fang
,
L.
,
Bai
,
J.
, and
Chintala
,
S.
,
2019
, “
Pytorch: An Imperative Style, High-Performance Deep Learning Library
,”
arXiv preprint
https://arxiv.org/abs/1912.01703
26.
Oliver
,
T. A.
,
Anderson
,
J. B.
,
Bogard
,
D. G.
,
Moser
,
R. D.
, and
Laskowski
,
G.
,
2017
, “
Implicit Les for Shaped-Hole Film Cooling Flow
,”
Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
American Society of Mechanical Engineers
, Paper No. GT2017-63314.
27.
Li
,
W.
,
Shi
,
W.
,
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2017
, “
Large Eddy Simulation of Axial and Compound Angle Holes With Varying Hole Length-to-Diameter Ratio
,”
Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
American Society of Mechanical Engineers
, Paper No. 10.1115/GT2017-63308.
28.
Kraichnan
,
R.
,
1970
, “
Diffusion by a Random Velocity Field
,”
Phys. Fluids.
,
13
(
1
), pp.
21
31
.
29.
Smirnov
,
A.
,
Shi
,
S.
, and
Celik
,
I.
,
2001
, “
Random Flow Generation Technique for Large Eddy Simulations and Particle-Dynamics Modeling
,”
J. Fluid. Eng.
,
123
(
2
), pp.
359
371
.
You do not currently have access to this content.