Abstract

An experimental study was conducted to characterize the evolution of turbulent boundary layer flow over a micro-rib-dimple-structured surface. In addition to measuring the surface pressure distribution and detailed flow field inside the dimple cavity, the heat transfer performance over the rib-dimpled surface was investigated using transient liquid crystal thermography. The flow field measurements were correlated with the heat transfer measurements to elucidate the underlying physical mechanism of the improvement in thermal efficiency due to the micro-rib structure. It was found that, compared to the dimpled surface, the micro-rib structure induces a stronger downwash flow and acts as a turbulator to enhance the turbulent mixing of the downstream flow, which significantly restricts the flow separation and the recirculating flow inside the dimple cavity. The dominant flows inside the dimple cavity are the downwash and successive upwash flows, which significantly enhance the turbulent mixing and, consequently, improve the heat transfer performance over the rib-dimpled surface. The measurements of the pressure loss and heat transfer performance indicated that the rib-dimpled surface has an overall thermal efficiency approximately 12–16% higher than that of the dimpled surface owing to the micro-rib structure.

References

1.
Kim
,
Y. W.
,
Arellano
,
L.
,
Vardakas
,
M.
,
Moon
,
H. K.
, and
Smith
,
K. O.
,
2003
, “
Comparison of Trip-Strip/Impingement/Dimple Cooling Concepts at High Reynolds Numbers
,”
ASME Turbo Expo 2003, Power for Land, Sea, and Air
,
Atlanta, GA
, ASME Paper No. GT2003-38935.
2.
Afanasyev
,
V. N.
,
Chudnovsky
,
Y. P.
,
Leontiev
,
A. I.
, and
Roganov
,
P. S.
,
1993
, “
Turbulent Flow Friction and Heat Transfer Characteristics for Spherical Cavities on a Flat Plate
,”
Exp. Therm. Fluid Sci.
,
7
(
1
), pp.
1
8
.
3.
Terekhov
,
V. I.
,
Kalinina
,
S. V.
, and
Mshvidobadze
,
Y. M.
,
1997
, “
Heat Transfer Coefficient and Aerodynamic Resistance on a Surface With a Single Dimple
,”
Enhanced Heat Transfer
,
4
(
2
), pp.
131
145
.
4.
Burgess
,
N. K.
, and
Ligrani
,
P. M.
,
2005
, “
Effects of Dimple Depth on Channel Nusselt Numbers and Friction Factors
,”
ASME J. Heat Transfer
,
127
(
8
), pp.
839
847
.
5.
Saini
,
R. P.
, and
Verma
,
J.
,
2008
, “
Heat Transfer and Friction Factor Correlations for a Duct Having Dimple-Shape Artificial Roughness for Solar Air Heaters
,”
Energy
,
33
(
8
), pp.
1277
1287
.
6.
Mitsudharmadi
,
H.
,
Tay
,
C. M. J.
, and
Tsai
,
H. M.
,
2009
, “
Effect of Rounded Edged Dimple Arrays on the Boundary Layer Development
,”
J. Vis.
,
12
(
1
), pp.
17
25
.
7.
Won
,
S. Y.
, and
Ligrani
,
P. M.
,
2004
, “
Numerical Predictions of Flow Structure and Local Nusselt Number Ratios Along and Above Dimpled Surfaces With Different Dimple Depths in a Channel
,”
Numer. Heat Tranf. A-Appl.
,
46
(
6
), pp.
549
570
.
8.
Lan
,
J.
,
Xie
,
Y.
, and
Zhang
,
D.
,
2011
, “
Heat Transfer Enhancement in a Rectangular Channel with the Combination of Ribs, Dimples and Protrusions
,”
ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, Vancouver
,
British Columbia, Canada
, pp.
1447
1455
, ASME Paper No. GT2011–46031.
9.
Xie
,
G.
,
Liu
,
J.
,
Ligrani
,
P. M.
, and
Zhang
,
W.
,
2013
, “
Numerical Predictions of Heat Transfer and Flow Structure in a Square Cross-Section Channel With Various Non-spherical Indentation Dimples
,”
Numer. Heat Tranf. A-Appl.
,
64
(
3
), pp.
187
215
.
10.
Luo
,
L.
,
Wen
,
F.
,
Wang
,
L.
,
Sunden
,
B.
, and
Wang
,
S.
,
2017
, “
On the Solar Receiver Thermal Enhancement by Using the Dimple Combined With Delta Winglet Vortex Generator
,”
Appl. Therm. Eng.
,
111
(
1
), pp.
586
598
.
11.
Ligrani
,
P. M.
,
Harrison
,
J. L.
,
Mahmmod
,
G. I.
, and
Hill
,
M. L.
,
2001
, “
Flow Structure due to Dimple Depressions on a Channel Surface
,”
Phys. Fluids
,
13
(
11
), pp.
3442
3451
.
12.
Mahmood
,
G. I.
,
Hill
,
M. L.
,
Nelson
,
D. L.
,
Ligrani
,
P. M.
,
Moon
,
H. K.
, and
Glezer
,
B.
,
2001
, “
Local Heat Transfer and Flow Structure on and Above a Dimpled Surface in a Channel
,”
ASME J. Turbomach.
,
123
(
1
), pp.
115
123
.
13.
Zhou
,
W.
,
Rao
,
Y.
, and
Hu
,
H.
,
2015
, “
An Experimental Investigation on the Characteristics of Turbulent Boundary Layer Flows Over a Dimpled Surface
,”
ASME J. Fluid Eng.
,
138
(
2
), p.
021204
.
14.
Moon
,
H. K.
,
O’Connell
,
T.
, and
Glezer
,
B.
,
2000
, “
Channel Height Effect on Heat Transfer and Friction in a Dimpled Passage
,”
ASME J. Eng. Gas. Turbines Power
,
122
(
2
), pp.
307
313
.
15.
Mahmood
,
G. I.
, and
Ligrani
,
P. M.
,
2002
, “
Heat Transfer in a Dimpled Channel: Combined Influences of Aspect Ratio, Temperature Ratio, Reynolds Number, and Flow Structure
,”
Int. J. Heat Mass Transfer
,
45
(
10
), pp.
2011
2020
.
16.
Coy
,
E. B.
, and
Danczyz
,
S. A.
,
2011
, “
Measurements of the Effectiveness of Concave Spherical Dimples for Enhancement Heat Transfer
,”
J. Propul. Power
,
27
(
5
), pp.
955
958
.
17.
Chyu
,
M. K.
,
Yu
,
Y.
, and
Ding
,
H.
,
1999
, “
Heat Transfer Enhancement in Rectangular Channels With Concavities
,”
Enhanced Heat Transfer
,
6
(
6
), pp.
429
439
.
18.
Neil Jordan
,
C.
, and
Wright
,
L. M.
,
2012
, “
Heat Transfer Enhancement in a Rectangular (AR = 3:1) Channel With V-Shaped Dimples
,”
ASME J. Turbomach.
,
135
(
1
), p.
011028
.
19.
Rao
,
Y.
,
Xu
,
Y.
, and
Wan
,
C.
,
2012
, “
A Numerical Study of the Flow and Heat Transfer in the Pin Fin-Dimple Channels With Various Dimple Depths
,”
ASME J. Heat Transfer
,
134
(
7
), p.
071902
.
20.
Han
,
J. C.
, and
Park
,
J. S.
,
1988
, “
Developing Heat Transfer in Rectangular Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
31
(
1
), pp.
183
195
.
21.
Han
,
J. C.
, and
Zhang
,
Y. M.
,
1992
, “
High Performance Heat Transfer Ducts With Parallel Broken and V-Shaped Broken Ribs
,”
Int. J. Heat Mass Transfer
,
35
(
2
), pp.
513
523
.
22.
Fu
,
W. L.
,
Wright
,
L. M.
, and
Han
,
J. C.
,
2005
, “
Heat Transfer in Two-Pass Rotating Rectangular Channels (AR = 1:2 and AR = 1:4) With 45 Deg Angled Rib Turbulators
,”
ASME J. Turbomach.
,
127
(
1
), pp.
164
174
.
23.
Han
,
J. C.
, and
Chen
,
H. C.
,
2006
, “
Turbine Blade Internal Cooling Passages With Rib Turbulators
,”
J. Propul. Power
,
22
(
2
), pp.
226
248
.
24.
Choi
,
E. Y.
,
Choi
,
Y. D.
, and
Kwak
,
J. S.
,
2013
, “
Effect of Dimple Configuration on Heat Transfer Coefficient in a Rib-Dimpled Channel
,”
J. Thermophys. Heat Transfer
,
27
(
4
), pp.
653
659
.
25.
Choi
,
E. Y.
,
Choi
,
Y. D.
,
Lee
,
W. S.
,
Chung
,
J. T.
, and
Kwak
,
J. S.
,
2013
, “
Heat Transfer Augmentation Using a Rib–Dimple Compound Cooling Technique
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
435
441
.
26.
Singh
,
P.
, and
Ekkad
,
S.
,
2017
, “
Experimental Study of Heat Transfer Augmentation in a Two-Pass Channel Featuring V-Shaped Ribs and Cylindrical Dimples
,”
Appl. Therm. Eng.
,
116
(
5
), pp.
205
216
.
27.
Singh
,
P.
,
Pandit
,
J.
, and
Ekkad
,
S. V.
,
2017
, “
Characterization of Heat Transfer Enhancement and Frictional Losses in a Two-Pass Square Duct Featuring Unique Combinations of Rib Turbulators and Cylindrical Dimples
,”
Int. J. Heat Mass Transfer
,
106
(
3
), pp.
629
647
.
28.
Rao
,
Y.
,
Feng
,
Y.
,
Li
,
B.
, and
Weigand
,
B.
,
2015
, “
Experimental and Numerical Study of Heat Transfer and Flow Friction in Channels With Dimples of Different Shapes
,”
ASME J. Heat Transfer
,
137
(
3
), p.
031901
.
29.
Chyu
,
M. K.
,
Yu
,
Y.
,
Ding
,
H.
,
Downs
,
J. P.
, and
Soechting
,
F. O.
,
1997
, “
Concavity Enhanced Heat Transfer in an Internal Cooling Passage
,”
ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition
,
Orlando, FL
,
V003T09A080
.
30.
Chang
,
S. W.
,
Chiang
,
K. F.
, and
Chou
,
T. C.
,
2010
, “
Heat Transfer and Pressure Drop in Hexagonal Ducts With Surface Dimples
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1172
1181
.
31.
Soloff
,
S. M.
,
Adrian
,
R. J.
, and
Liu
,
Z. C.
,
1997
, “
Distortion Compensation for Generalized Stereoscopic Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
8
(
12
), pp.
1441
1454
.
32.
Ligrani
,
P. M.
,
Oliveira
,
M. M.
, and
Blaskovich
,
T.
,
2003
, “
Comparison of Heat Transfer Augmentation Techniques
,”
AIAA J.
,
41
(
3
), pp.
337
360
.
33.
Han
,
J. C.
,
2006
, “
Turbine Blade Cooling Studies at Texas A&M University: 1980–2004
,”
J. Thermophys. Heat Transfer
,
20
(
2
), pp.
161
187
.
34.
Kays
,
V. M.
, and
Crawford
,
M.E.
,
1993
,
Convective Heat and Mass Transfer
,
McGraw-Hill Education
,
New York
.
35.
Gee
,
D. L.
, and
Webb
,
R. L.
,
1980
, “
Forced Convection Heat Transfer in Helically Rib-Roughened Tubes
,”
Int. J. Heat Mass Transfer
,
23
(
8
), pp.
1127
1136
.
36.
Ligrani
,
P. M.
,
Burgess
,
N. K.
, and
Won
,
S. Y.
,
2005
, “
Nusselt Numbers and Flow Structure on and Above a Shallow Dimpled Surface Within a Channel Including Effects of Inlet Turbulence Intensity Level
,”
ASME J. Turbomach.
,
127
(
2
), pp.
321
330
.
You do not currently have access to this content.