Abstract

Nickel-base superalloys are extensively used in the production of gas turbine hot-section components as they offer exceptional creep strength and superior fatigue resistance at high temperatures. Such improved properties are due to the presence of precipitate-strengthening phases such as Ni3Ti or Ni3Al (γ′ phases) in the normally face-centered cubic (FCC) structure of the solidified nickel. Although this second phase is the main reason for the improvements in properties, the presence of such phases also results in increased processing difficulties as these alloys are prone to crack formation. In this work, specimens of IN738LC are fabricated on a Coherent Creator laser powder bed fusion (L-PBF) additive manufacturing (AM) equipment. Optical microscopy (OM), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and X-ray diffraction (XRD) are carried out to characterize the deposit region. Metallurgical continuity is achieved in the entire deposit region and the specimens do not show any warpage. However, the specimens show voids (e.g., pores and cracks) in the deposit region. The results show that the percentage void area decreases along the build height direction. The deposited IN738LC shows polycrystalline grains in the entire deposit region as confirmed by XRD and EBSD. The grain size also shows variations along the build direction. In summary, the results open opportunities for academic researchers and small-scale businesses in fabricating high-γ′ nickel-base superalloys on a desktop laser powder bed fusion AM equipment.

References

1.
Levy
,
G. N.
,
Schindel
,
R.
, and
Kruth
,
J. P.
,
2003
, “
Rapid Manufacturing and Rapid Tooling With Layer Manufacturing (LM) Technologies, State of the Art and Future Perspectives
,”
CIRP Ann.
,
52
(
2
), pp.
589
609
.
2.
Kruth
,
J. P.
,
Leu
,
M. C.
, and
Nakagawa
,
T.
,
1998
, “
Progress in Additive Manufacturing and Rapid Prototyping
,”
CIRP Ann.
,
47
(
2
), pp.
525
540
.
3.
ISO/ASTM52900—15 Standard Terminology for Additive Manufacturing—General Principles—Terminology
,” https://www.astm.org/Standards/ISOASTM52900.htm, Accessed August 24, 2021.
4.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing
,
Springer
,
Cham, Switzerland
.
5.
Zitelli
,
C.
,
Folgarait
,
P.
, and
Di Schino
,
A.
,
2019
, “
Laser Powder Bed Fusion of Stainless Steel Grades: A Review
,”
Metals
,
9
(
7
), p.
731
.
6.
Yan
,
X.
,
Xu
,
Y. X.
,
Wu
,
Y.
, and
Lin
,
H.
,
2018
, “
Effects of Heat Treatment on Metal-Ceramic Combination of Selective-Laser-Melted Cobalt-Chromium Alloy
,”
J. Prosthet. Dent.
,
120
(
2
), pp.
319.e1
319.e6
.
7.
Manfredi
,
D.
, and
Bidulský
,
R.
,
2017
, “
Laser Powder Bed Fusion of Aluminum Alloys
,”
Acta Metall. Slovaca
,
23
(
3
), pp.
276
282
.
8.
Tian
,
Z.
,
Zhang
,
C.
,
Wang
,
D.
,
Liu
,
W.
,
Fang
,
X.
,
Wellmann
,
D.
,
Zhao
,
Y.
, and
Tian
,
Y.
,
2019
, “
A Review on Laser Powder Bed Fusion of Inconel 625 Nickel-Based Alloy
,”
Appl. Sci.
,
10
(
1
), p.
81
.
9.
Adegoke
,
O.
,
Andersson
,
J.
,
Brodin
,
H.
, and
Pederson
,
R.
,
2020
, “
Review of Laser Powder Bed Fusion of Gamma-Prime-Strengthened Nickel-Based Superalloys
,”
Metals
,
10
(
8
), p.
996
.
10.
Basak
,
A.
,
2019
, “
Additive Manufacturing of High-Gamma Prime Nickel-Based Superalloys Through Selective Laser Melting (SLM)
,”
Solid Freeform Fabrication 2019: Proceedings of the 30th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, SFF 2019
,
Austin, TX
,
Aug. 12–14
, pp.
554
575
.
11.
Lee
,
Y. S.
,
Kirka
,
M. M.
,
Kim
,
S.
,
Sridharan
,
N.
,
Okello
,
A.
,
Dehoff
,
R. R.
, and
Babu
,
S. S.
,
2018
, “
Asymmetric Cracking in Mar-M247 Alloy Builds During Electron Beam Powder Bed Fusion Additive Manufacturing
,”
Metall. Mater. Trans. A
,
49
(
10
), pp.
5065
5079
.
12.
Rosenthal
,
R.
, and
West
,
D. R. F.
,
1999
, “
Continuous γ′ Precipitation in Directionally Solidified IN738 LC Alloy
,”
Mater. Sci. Technol.
,
15
(
12
), pp.
1387
1394
.
13.
Ojo
,
O. A.
,
Richards
,
N. L.
, and
Chaturvedi
,
M. C.
,
2004
, “
On Incipient Melting During High Temperature Heat Treatment of Cast Inconel 738 Superalloy
,”
J. Mater. Sci.
,
39
(
24
), pp.
7401
7404
.
14.
Ojo
,
O. A.
,
Richards
,
N. L.
, and
Chaturvedi
,
M. C.
,
2004
, “
Contribution of Constitutional Liquation of Gamma Prime Precipitate to Weld HAZ Cracking of Cast Inconel 738 Superalloy
,”
Scr. Mater.
,
50
(
5
), pp.
641
646
.
15.
Rickenbacher
,
L.
,
Etter
,
T.
,
Hövel
,
S.
, and
Wegener
,
K.
,
2013
, “
High Temperature Material Properties of IN738LC Processed by Selective Laser Melting (SLM) Technology
,”
Rapid Prototyp. J.
,
19
(
4
), pp.
282
290
.
16.
Kunze
,
K.
,
Etter
,
T.
,
Grässlin
,
J.
, and
Shklover
,
V.
,
2015
, “
Texture, Anisotropy in Microstructure and Mechanical Properties of IN738LC Alloy Processed by Selective Laser Melting (SLM)
,”
Mater. Sci. Eng. A
,
620
, pp.
213
222
.
17.
Zhou
,
W.
,
Zhu
,
G.
,
Wang
,
R.
,
Yang
,
C.
,
Tian
,
Y.
,
Zhang
,
L.
,
Dong
,
A.
,
Wang
,
D.
,
Shu
,
D.
, and
Sun
,
B.
,
2020
, “
Inhibition of Cracking by Grain Boundary Modification in a Non-Weldable Nickel-Based Superalloy Processed by Laser Powder Bed Fusion
,”
Mater. Sci. Eng. A
,
791
, p.
139745
.
18.
Engeli
,
R.
,
Etter
,
T.
,
Hövel
,
S.
, and
Wegener
,
K.
,
2016
, “
Processability of Different IN738LC Powder Batches by Selective Laser Melting
,”
J. Mater. Process. Technol.
,
229
, pp.
484
491
.
19.
Xu
,
J.
,
Gruber
,
H.
,
Deng
,
D.
,
Peng
,
R. L.
, and
Moverare
,
J. J.
,
2019
, “
Short-Term Creep Behavior of an Additive Manufactured Non-Weldable Nickel-Base Superalloy Evaluated by Slow Strain Rate Testing
,”
Acta Mater.
,
179
, pp.
142
157
.
20.
Perevoshchikova
,
N.
,
Rigaud
,
J.
,
Sha
,
Y.
,
Heilmaier
,
M.
,
Finnin
,
B.
,
Labelle
,
E.
, and
Wu
,
X.
,
2017
, “
Optimisation of Selective Laser Melting Parameters for the Ni-Based Superalloy IN-738 LC Using Doehlert’s Design
,”
Rapid Prototyp. J.
,
23
(
5
), pp.
881
892
.
21.
Sotov
,
A. V.
,
Agapovichev
,
A. V.
,
Smelov
,
V. G.
,
Kokareva
,
V. V.
,
Dmitrieva
,
M. O.
,
Melnikov
,
A. A.
,
Golanov
,
S. P.
, and
Anurov
,
Y. M.
,
2020
, “
Investigation of the IN-738 Superalloy Microstructure and Mechanical Properties for the Manufacturing of Gas Turbine Engine Nozzle Guide Vane by Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,
107
(
5–6
), pp.
2525
2535
.
22.
3D Metal Printer|Coherent
,” https://content.coherent.com/legacy-assets/pdf/COHR_CREATOR_DS_0119_1.pdf, Accessed November 23, 2020.
23.
LPW Additive Manufacturing Powders by LPW Technology Ltd—Issuu
,” https://issuu.com/lpwtechnology/docs/lpw_additive_manufacturing_powders, Accessed January 24, 2021.
24.
Cloots
,
M.
,
Kunze
,
K.
,
Uggowitzer
,
P. J.
, and
Wegener
,
K.
,
2016
, “
Microstructural Characteristics of the Nickel-Based Alloy IN738LC and the Cobalt-Based Alloy Mar-M509 Produced by Selective Laser Melting
,”
Mater. Sci. Eng. A
,
658
, pp.
68
76
.
25.
Cloots
,
M.
,
Uggowitzer
,
P. J.
, and
Wegener
,
K.
,
2016
, “
Investigations on the Microstructure and Crack Formation of IN738LC Samples Processed by Selective Laser Melting Using Gaussian and Doughnut Profiles
,”
Mater. Des.
,
89
, pp.
770
784
.
26.
Rasband
,
W. S.
,
2014
,
ImageJ
,
U.S. National Institutes of Health
,
Bethesda, MD
. http://imagej.nih.gov/ij/
27.
Qiu
,
C.
,
Panwisawas
,
C.
,
Ward
,
M.
,
Basoalto
,
H. C.
,
Brooks
,
J. W.
, and
Attallah
,
M. M.
,
2015
, “
On the Role of Melt Flow Into the Surface Structure and Porosity Development During Selective Laser Melting
,”
Acta Mater.
,
96
, pp.
72
79
.
28.
Basak
,
A.
,
Acharya
,
R.
, and
Das
,
S.
,
2016
, “
Additive Manufacturing of Single-Crystal Superalloy CMSX-4 Through Scanning Laser Epitaxy: Computational Modeling, Experimental Process Development, and Process Parameter Optimization
,”
Metall. Mater. Trans. A
,
47
(
8
), pp.
3845
3859
.
29.
Engeli
,
R.
,
Etter
,
T.
, and
Meidani
,
H.
,
2015
,
Gamma Prime Precipitation Strengthened Nickel-Base Superalloy for use in Powder Based Additive Manufacturing Process, U.S. Patent Application 14/715,882
.
30.
Basak
,
A.
, and
Das
,
S.
,
2016
, “
A study on the Effects of Substrate Crystallographic Orientation on Microstructural Characteristics of René N5 Processed Through Scanning Laser Epitaxy
,”
Proceedings of the 13th International Symposium on Superalloys
,
Seven Springs, PA
,
Sept. 11–15
.
31.
Basak
,
A.
, and
Das
,
S.
,
2018
, “
Additive Manufacturing of Nickel-Base Superalloy IN100 Through Scanning Laser Epitaxy
,”
JOM
,
70
(
1
), pp.
53
59
.
32.
Sente Software—JMatPro®
.” https://www.sentesoftware.co.uk/jmatpro, Accessed November 25, 2020.
33.
Klepser
,
C. A.
,
1995
, “
Effect of Continuous Cooling Rate on the Precipitation of Gamma Prime in Nickel-Based Superalloys
,”
Scr. Metall. Mater.
,
33
(
4
), pp.
589
596
.
34.
Basak
,
A.
, and
Das
,
S.
,
2017
, “
Additive Manufacturing of Nickel-Base Superalloy René N5 Through Scanning Laser Epitaxy (SLE) − Material Processing, Microstructures, and Microhardness Properties
,”
Adv. Eng. Mater.
,
19
(
3
), p.
1600690
.
You do not currently have access to this content.