Abstract

Variable inlet guide vanes (VIGV) are the main control element to adjust the flow rate of industrial centrifugal compressors by customized pre-swirl in the inlet plane of the impeller. The efficient working range of VIGVs is however restricted due to open flow separation occurring at critical stagger angles. In order to overcome the narrow limitations of current blade geometries and to enhance the operating range of the compressor, split blades consisting of a separate front and tail blade segment proved to be particularly promising in previous linear-cascade measurements. Each blade segment is thereby individually staggered. This enables a gradual flow deflection along the chord length. Secondary flow losses, however, were not considered in the previous investigations with linear cascades. To highlight the potential of the split blade concept under more application-oriented conditions including all relevant flow effects, highly resolved field measurements were conducted in the wake of annular VIGVs. Four different blade configurations, a customary reference case and three variations of the split blade with full, partial and missing sealing in the gap between the segments were assessed using five-hole probe measurements. By investigating a wide range of stagger angles, the coverage of the full low-loss working range of the VIGV could be ensured. Especially, the fully sealed split blade configuration proved its capacity to extend the efficient operational range significantly.

References

1.
Rothstein
,
E.
,
1987
, “
New Solutions in the Process Industry—Application of Six-Stage Integrally Geared Centrifugal Compressors
,”
Proceedings of the 19th Turbomachinery Symposium
,
Texas A&M University, College Station, TX
.
2.
Beaty
,
P. J.
,
Eisele
,
K.
,
Maceyka
,
T. D.
, and
Schwarz
,
C.
,
2000
, “
Integrally Geared API 617 Process Gas Compressors
,”
Proceedings of the 29th Turbomachinery Symposium
,
Texas A&M University, College Station, TX
.
3.
Stark
,
U.
, and
Böhle
,
M.
,
1990
, “
Theoretische Und Experimentelle Untersuchungen An Ungestaffelten Gittern Aus Profilen Mit Mechanischen Klappen
,”
Forschung im Ingenieurwesen
,
56
(
6
), pp.
169
182
.
4.
Mohseni
,
A.
,
Goldhahn
,
E.
,
Van den Braembussche
,
R. A.
, and
Seume
,
J. R.
,
2012
, “
Novel IGV Designs for Centrifugal Compressors and Their Interaction With the Impeller
,”
ASME J. Turbomach.
,
134
(
2
), p.
021006
.
5.
Gellings
,
C. W.
,
1985
, “
The Concept of Demand-Side Management for Electric Utilities
,”
Proc. IEEE
,
73
(
10
), pp.
1468
1470
.
6.
Sauer
,
A.
,
Abele
,
E.
, and
Buhl
,
H. U.
,
2019
,
Energieflexibilität in Der Deutschen Industrie
,
Frauenhofer Verlag
,
Stuttgart
. ISBN 978-3-8396-1479-2.
7.
Hatziargyriou
,
N.
,
Dimeas
,
A.
,
Tsikalakis
,
A.
,
Lopes
,
J.
,
Karniotakis
,
G.
, and
Oyarzabal
,
J.
,
2005
, “
Management of Microgrids in Market Environment
,”
International Conference on Future Power Systems
,
Amsterdam, The Netherlands
.
8.
Häfner
,
L.
,
2018
, “
Demand Side Management: Entscheidungsunterstützungssysteme Für Die Flexible Beschaffung Von Energie Unter Integrierten Chancen- Und Risikoaspekten
,”
HMD. Theorie und Praxis der Wirtschaftsinformatik
,
55
(
3
), pp.
627
645
.
9.
Bross
,
S.
, and
Stark
,
U.
,
1994
, “
Entwicklung Neuer Schaufelgitter Aus Profilen Variabler Geometrie Zum Einsatz in Leiträdern Drallgerelgeter Turbomaschinen - Teil I
,”
Forschung im Ingenieurwesen
,
60
(
5
), pp.
133
153
.
10.
Händel
,
D.
,
Niehuis
,
R.
, and
Klausmann
,
J.
,
2015
, “
Aerodynamic Investigation of An Advanced VIGV Design of Adjustable Geometry for Very High Flow Turning
,”
ASME Turbo Expo
,
Montreal, Quebec, Canada
, GT2015-42166.
11.
Kassens
,
I.
, and
Rautenberg
,
M.
,
1998
,
Flow Measurements Behind the Inlet Guide Vane of a Centrifugal Compressor
. Technical Report, ASME Turbo Expo, 98-GT-86.
12.
Händel
,
D.
,
Barthmes
,
S.
, and
Niehuis
,
R.
,
2013
, “
2D Investigation of the Flow Through a Symmetric Variable Inlet Guide Vane, Part 1: Experimental Analysis
.”
AIAA/ASME/ASE/ASEE Joint Propulsion Conference
, AIAA 2013-3682.
13.
Händel
,
D.
,
Rockstroh
,
U.
, and
Niehuis
,
R.
,
2014
, “
Experimental Investigation of Transition and Seperation Phenomena on An Inlet Guide Vane With Symmetric Profile at Different Stagger Angles and Reynolds Numbers
,”
FR305, International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
,
Honolulu, HI
.
14.
Händel
,
D.
,
Niehuis
,
R.
, and
Rockstroh
,
U.
,
2014
, “
Aerodynamic Investigation of a Variable Inlet Guide Vane With Symmetric Profile
,” ASME Turbo Expo, GT2014-26900.
15.
Frank
,
R.
,
Wacker
,
C.
, and
Niehuis
,
R.
,
2021
, “
Loss Characterization of a Conventional Variable Inlet Guide Vane
,”
Int. J. Turbomach. Propuls. Power
,
6
(
30
).
16.
Coppinger
,
M.
, and
Swain
,
E.
,
2000
, “
Performance Prediction of An Industrial Centrifugal Compressor Inlet Guide Vane System
,”
Proc. Inst. Mech. Eng.
,
214
(
A
), pp.
153
164
.
17.
Hemmert-Pottmann
,
S.
,
Gouezou
,
W.
, and
Nicke
,
E.
,
2018
,
Compressible Flow in Inlet Guide Vanes with Mechanical Flaps
.
Technical Report
, ASME Turbo Expo, GT2018-75489.
18.
Händel
,
D.
,
2018
,
Experimentelle Untersuchung Und Weiterentwicklung Eines Variablen Eintrittsleitapparates Für Die Vordrallregelung in Turbomaschinen
,
Verlag Dr. Hut
,
Munich
.
19.
Schlichting
,
H.
, and
Gersten
,
K.
,
2006
,
Grenzschicht-Theorie
,
Springer-Verlag
,
Berlin Heidelberg New York
.
20.
Frank
,
R.
,
Wacker
,
C.
, and
Niehuis
,
R.
,
2020
, “
A New Test Facility for Advanced Testing of Variable Inlet Guide Vanes
.”
MTT Measuring Techniques in Turbomachinery
, MTT2520A18.
21.
Bryer
,
D.
, and
Pankhurst
,
R.
,
1971
,
Pressure-Probe Methods for Determining Wind Speed and Flow Direction
,
Her Majesty’s Stationary Office
,
London
.
22.
Sieverding
,
C. H.
,
1985
, “
Recent Progress in Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
248
258
.
23.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachinery
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
24.
Green
,
S. I.
,
1995
, “Wing Tip Vortices,”
Fluid Mechanics and Its Applications
, vol.
30
,
Springer-Verlag
,
Dordrecht
.
25.
Chen
,
Y. N.
,
Hagelstein
,
D.
,
Kassens
,
I.
,
Hasermann
,
H.
,
Haupt
,
U.
, and
Rautenberg
,
M.
,
1999
, “
Overshoot of the Rankine Vortex Formed in the Flow Field Behind the Inlet Guide Vane of Centrifugal Compressors
,” ASME Turbo Expo, 99-GT-182.
You do not currently have access to this content.