Abstract

In the current study, the tandem blade technology is applied to an supersonic throughflow fan (STFF) tandem cascade for the first time and a 2D STFF tandem cascade is preliminarily designed. Through the modification design of the tandem airfoils and their configuration (axial overlap (AO) and percent pitch (PP)), the coefficients of total pressure loss and loading are reduced by 4% and 8.58%, respectively. Furthermore, the impact of tandem configurations on the performance is parametrically investigated by numerical simulations. The results indicate that compared with AO, the performance under design incidence is more sensitive to PP except for the cases with PP exceeding a threshold value (1.15). PP dominates the loss and load by controlling the evolution of the FB wake and the shock structure of FB and the rear one of the tandem blade (RB), while AO mainly adjusts the entire shock system structure through the change of virtual shape, resulting in the variation in load distribution between FB and RB. It is worth noting that the overall loading and the total loss remain unchanged with increasing AO except for the tandem configurations (PP = 1.05, AO ≤ −0.01), which make the flow structure in the gap region undergo a fundamental change. With the optimal tandem configuration (PP = 1.05, AO = −0.01) and the modified tandem blades (the ratios of chord length and camber for FB over RB are 0.67 and 0.5, respectively), the total pressure loss coefficient is further reduced by 19.7% in comparison with the preliminary tandem design.

References

1.
Kerrebrock
,
J. L.
,
Epstein
,
A. H.
,
Merchant
,
A. A.
,
Guenette
,
G. R.
,
Parker
,
D.
,
Onnee
,
J.
,
Neumayer
,
F.
,
Adamczyk
,
J. J.
, and
Shabbir
,
A.
,
2008
, “
Design and Test of an Aspirated Counter-Rotating Fan
,”
ASME J. Turbomach
,
130
(
1
), p.
021004
.
2.
Sun
,
S. J.
,
Wang
,
S. T.
, and
Chen
,
S. W.
,
2017
, “
Aerodynamic Design and Analysis of a Two-Stage High-Load Low-Reaction Transonic Aspirated Counter-Rotating Compressor
,”
Proceedings of Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
, ASME Paper No. GT2017-64144.
3.
Sun
,
S. J.
,
Wang
,
S. T.
, and
Chen
,
S. W.
,
2020
, “
Design, Modification and Optimization of an Ultra-High-Load Transonic Low-Reaction Aspirated Compressor
,”
Aerosp. Sci. Technol
,
105
(
2020
), p.
105975
.
4.
Cao
,
Z. Y.
,
Liu
,
B.
,
Zhang
,
T.
, and
Xu
,
Y. B.
,
2018
, “
Design Strategies and Numerical Simulation of Highly Loaded Aspirated Compressor Blades
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
232
(
4
), pp.
315
336
.
5.
Wang
,
Z. A.
,
Chang
,
J. T.
,
Li
,
Y. F.
, and
Kong
,
C.
,
2021
, “
Investigation of Shock Wave Control by Suction in a Supersonic Cascade
,”
Aerosp. Sci. Technol
,
108
(
2021
), p.
106382
.
6.
Ma
,
S.
,
Chu
,
W. L.
,
Zhang
,
H. G.
,
Yan
,
S.
, and
Zhong
,
Y. M.
,
2019
, “
Study of Combined Flow Control Strategies Based on a Quantitative Analysis in a High-Load Compressor Cascade
,”
Aerosp. Sci. Technol
,
93
(
2019
), p.
105346
.
7.
Ma
,
S.
,
Chu
,
W. L.
,
Zhang
,
H. G.
,
Li
,
X. J.
, and
Kuang
,
H. Y.
,
2018
, “
Effects of Modified Micro-Vortex Generators on Aerodynamic Performance in a High-Load Compressor Cascade
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
233
(
3
), pp.
309
323
.
8.
Li
,
J. B.
, and
Ji
,
L. C.
,
2019
, “
Efficient Design Method for Applying Vortex Generators in Turbomachinery
,”
ASME J. Turbomach.
,
141
(
8
), p.
81005
.
9.
Sun
,
S. J.
,
Chen
,
S. W.
,
Liu
,
W.
,
Gong
,
Y.
, and
Wang
,
S. T.
,
2018
, “
Effect of Axisymmetric Endwall Contouring on the High-Load Low-Reaction Transonic Compressor Rotor With a Substantial Meridian Contraction
,”
Aerosp. Sci. Technol
,
81
(
2018
), pp.
78
87
.
10.
Cao
,
Z. Y.
,
Gao
,
X.
, and
Liu
,
B.
,
2019
, “
Control Mechanisms of Endwall Profiling and Its Comparison With Bowed Blading on Flow Field and Performance of a Highly-Loaded Compressor Cascade
,”
Aerosp. Sci. Technol
,
95
(
2019
), p.
105472
.
11.
Sun
,
S. J.
,
Wang
,
S. T.
,
Chen
,
S. W.
,
Tao
,
C. S. J.
,
Cai
,
L.
, and
Chen
,
J.
,
2019
, “
The Impact of Various Forward Sweep Angles on the Performance of an Ultra-High-Load Low-Reaction Transonic Compressor Rotor
,”
Appl. Therm. Eng
,
150
(
2019
), pp.
953
966
.
12.
Sun
,
S. J.
,
Wang
,
S. T.
, and
Chen
,
S. W.
,
2020
, “
The Influence of Diversified Forward Sweep Heights on Operating Range and Performance of an Ultra-High-Load Low-Reaction Transonic Compressor Rotor
,”
Energy
,
194
(
2020
), p.
116857
.
13.
Lu
,
H. N.
,
Li
,
Q. S.
, and
Pan
,
T. Y.
,
2018
, “
Using Forward End-Sweep to Reduce Transonic Cantilevered Stator Losses to Improve Compressor Performance
,”
Eng. Appl. Comp. Fluid Mech.
,
12
(
1
), pp.
293
307
.
14.
Trucco
,
H.
,
1975
, “
Study of Variable Cycle Engines Equipped With Supersonic Fans
,” (ATL TR 201 Advanced Technology Laboratories Inc., NAS3–17559), NASA Report CR-134777.
15.
Liu
,
B. J.
,
Shi
,
H. T.
, and
Yu
,
X. J.
,
2018
, “
A New Method for Rapid Shock Loss Evaluation and Reduction for the Optimization Design of a Supersonic Compressor Cascade
,”
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
,
232
(
13
), pp.
2458
2476
.
16.
Venturelli
,
G.
, and
Benini
,
E.
,
2016
, “
Kriging-Assisted Design Optimization of S-Shape Supersonic Compressor Cascades
,”
Aerosp. Sci. Technol
,
58
(
2016
), pp.
275
297
.
17.
Ninnemann
,
T.
, and
Ng
,
W. F.
,
2004
, “
Loss Reduction Using Riblets on a Supersonic Through-Flow Fan Blade Cascade
,”
ASME J. Fluids Eng.
,
126
(
4
), pp.
642
649
.
18.
Franciscus
,
L. C.
,
1978
, “
Supersonic Through-Flow Fan Engines for Supersonic Cruise Aircraft
,” Technical Memorandum, NASA Report TM-78889.
19.
Franciscus
,
L. C.
,
1987
, “
The Supersonic Through-Flow Turbofan for High Mach Propulsion
,”
Proceedings of 23rd Joint Propulsion Conference
, AIAA Paper No. 87-2050.
20.
Breugelmans
,
F. A. E.
,
1975
, “
The Supersonic Axial Inlet Component in a Compressor
,” ASME Paper No. 75-GT-26.
21.
Kielb
,
R. E.
, and
Ramsey
,
J. K.
,
1989
, “
Flutter of a Fan Blade in Supersonic Axial Flow
,”
ASME J. Turbomach
,
111
(
4
), pp.
462
467
.
22.
McGlumphy
,
J.
,
Ng
,
W. F.
,
Wellborn
,
S. R.
, and
Kempf
,
S.
,
2009
, “
Numerical Investigation of Tandem Airfoils for Subsonic Axial-Flow Compressor Blades
,”
ASME J. Turbomach
,
131
(
2
), p.
021018
.
23.
Hergt
,
A.
, and
Siller
,
U.
,
2016
, “
About Subsonic Compressor Tandem Aerodynamics–A Fundamental Study
,”
16th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Paper No. hal-01884245.
24.
Hergt
,
A.
,
Grund
,
S.
,
Klinner
,
J.
,
Steinert
,
W.
,
Beversdorff
,
M.
, and
Siller
,
U.
,
2019
, “
Some Aspects of the Transonic Compressor Tandem Design
,”
ASME J. Turbomach
,
141
(
9
), p.
091003
.
25.
Liu
,
B. J.
,
Fu
,
D.
, and
Yu
,
X. J.
,
2018
, “
Maximum Loading Capacity of Tandem Blades in Axial Compressors
,”
Proceedings of Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
, ASME Paper No. GT2018-76770.
26.
Zhang
,
L. X.
, and
Wang
,
S. T.
,
2018
, “
A Combination Application of Tandem Blade and Endwall Boundary Layer Suction in a Highly Loaded Aspirated Compressor Outlet Vane
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
232
(
2
), pp.
129
143
.
27.
Mao
,
X. C.
,
Liu
,
B.
, and
Zhang
,
B. T.
,
2019
, “
Hub Clearance Effects of a Cantilevered Tandem Stator on the Performance and Flow Behaviors in a Small-Scale Axial Flow Compressor
,”
Aerosp. Sci. Technol
,
91
(
2019
), pp.
219
230
.
28.
Heinrich
,
A.
,
Tiedemann
,
C.
, and
Peitsch
,
D.
,
2017
, “
Experimental Investigations of the Aerodynamics of Highly Loaded Tandem Vanes in a High-Speed Stator Cascade
,”
Proceedings of Turbo Expo 2017: TurbomachineryTechnical Conference and Exposition
, ASME Paper No. GT2017-63235.
29.
Hergt
,
A.
, and
Siller
,
U.
,
2015
, “
About Transonic Compressor Tandem Design: A Principle Study
,”
Proceedings of Turbo Expo 2015: Turbine Technical Conference and Exposition
, ASME Paper No. GT2015-42115.
30.
Mohsen
,
M.
,
Owis
,
F. M.
, and
Hashim
,
A. A.
,
2017
, “
The Impact of Tandem Rotor Blades on the Performance of Transonic Axial Compressors
,”
Aerosp. Sci. Technol
,
67
(
2017
), pp.
237
248
.
31.
Li
,
Q. S.
,
Wu
,
H.
, and
Zhou
,
S.
,
2010
, “
Application of Tandem Cascade to Design of Fan Stator With Supersonic Inflow
,”
Chin. J. Aeronaut.
,
23
(
1
), pp.
9
14
.
32.
Tao
,
Y.
,
Wu
,
Y. F.
,
Yu
,
X. J.
, and
Liu
,
B. J.
,
2020
, “
Analysis of Flow Characteristic of Transonic Tandem Rotor Airfoil and Its Optimization
,”
Appl. Sci.
,
10
(
16
), p.
5569
.
33.
Chesnakas
,
C. J.
, and
Ng
,
W. F.
,
2003
, “
Supersonic Through-Flow Fan Blade Cascade Studies
,”
ASME J. Fluids Eng.
,
125
(
5
), pp.
796
805
.
34.
Schmidt
,
J. F.
,
Moore
,
R. D.
,
Wood
,
J. R.
, and
Steinke
,
R. J.
,
1987
, “
Supersonic Through-Flow Fan Design
,”
Proceedings of 23rd Joint Propulsion Conference
, AIAA Paper No. 87-1746.
35.
Chesnakas
,
C. J.
,
1991
, “
Experimental Studies in a Supersonic Through-Flow Fan Blade Cascade
,”
Ph.D. dissertation
,
Virginia Tech
,
Blacksburg, VA
.
You do not currently have access to this content.