Abstract

First stages of aeronautical high-pressure turbines are subjected to significant inlet distortions generated by the combustor system. These disturbances are characterized by velocity and temperature fluctuations convected downstream by the flow. Such perturbations are commonly defined as vorticity and entropy waves and interact with the turbine stages affecting the aerodynamic performance, the heat exchange, and generating indirect noise. Moreover, the presence of a swirling flow highly influences the convection and migration of the entropy wave and thus its interaction with the stage. This article presents an in-depth study of the impact of the swirling flows on the entropy wave evolution by means of experimental campaigns and numerical simulations. Experimental campaigns have been carried out at Politecnico di Milano where a high-pressure turbine rig was equipped with a novel combustor simulator able to generate entropy waves and swirl profiles. Numerical simulations have been performed at the University of Florence by applying time accurate simulation schemes, including incoming disturbances, implemented in the CFD TRAF code. Two different entropy waves (featuring frequencies of 10 and 110 Hz) injected in a counterclockwise swirling region at mid-span have been analyzed at two clocking positions: passage aligned and vane aligned. An excellent agreement is found between experimental acquisitions and numerical results: both show an important reduction of the temperature fluctuations through the stage and highlight the effect of the swirling profile on secondary flows and blade wakes. The extensive comparison reported in this article validates the numerical approach (based on unsteady simulations postprocessed by a dedicated filtering technique), which has been further applied to study the impact of swirling flows with an opposite rotation (clockwise). The broad numerical investigation combined with the extensive experimental campaign leads to a deeper understanding of the aerodynamic, thermal, and acoustic implications related to entropy wave evolution in a swirling flow, highlighting the interaction phenomena and suggesting how to minimize the impact of entropy waves by comparing the results of the different injection positions and swirling flow directions.

References

1.
Sharma
,
O.
,
Pickett
,
G.
, and
Ni
,
R.
,
1992
, “
Assessment of Unsteady Flow in Turbines
,”
ASME J. Turbomach.
,
114
(
1
), pp.
79
90
.
2.
Butler
,
T.
,
Sharma
,
O.
,
Joslyn
,
H.
, and
Dring
,
R.
,
1989
, “
Redistribution of an Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
J. Propul. Power
,
5
(
1
), pp.
64
71
.
3.
Dorney
,
D.
, and
Sondak
,
D.
,
2000
, “
Effects of Tip Clearance on Hot Streak Migration in a High Subsonic Single Stage Turbine
,”
ASME J. Turbomach.
,
122
(
4
), pp.
613
620
.
4.
An
,
B.
,
Liu
,
J.
, and
Jiang
,
H.
,
2009
, “
Numerical Investigation on Unsteady Effects of Hot Streak on Flow and Heat Transfer in Turbine Stage
,”
ASME J. Turbomach.
,
131
(
3
), p.
031015
.
5.
Jacobi
,
S.
,
Mazzoni
,
C.
,
Chana
,
K.
, and
Rosic
,
B.
,
2017
, “
Investigation of Unsteady Flow Phenomena in the First Vane Caused by the Combustor Flow With Swirl
,”
ASME J. Turbomach.
,
139
(
4
), p.
041006
.
6.
Morgans
,
A. S.
, and
Durán
,
I.
,
2016
, “
Entropy Noise: A Review of Theory, Progress and Challenges
,”
Int. J. Spray Combust. Dyn.
,
8
(
4
), pp.
285
298
.
7.
Dowling
,
A. P.
, and
Mahmoudi
,
Y.
,
2015
, “
Combustion Noise
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
65
100
.
8.
Giles
,
M.
, and
Saxer
,
A.
,
1994
, “
Predictions of Three-Dimensional Steady and Unsteady Inviscid Transonic Stator/Rotor Interaction With Inlet Radial Temperature Nonuniformity
,”
ASME J. Turbomach.
,
116
(
3
), pp.
347
357
.
9.
Ong
,
J.
, and
Miller
,
R.
,
2012
, “
Hot Streak and Vane Coolant Migration in a Downstream Rotor
,”
ASME J. Turbomach.
,
134
(
5
), p.
051002
.
10.
Koupper
,
C.
,
Bonneau
,
G.
, and
Gicquel
,
L.
,
2016
, “
Large Eddy Simulation of the Combustor Turbine Interface: Study of the Potential and Clocking Effects
,”
IGTI ASME Turbo Expo
, ASME Paper No. GT2016-56443.
11.
Gaetani
,
P.
,
Persico
,
G.
,
Pinelli
,
L.
,
Marconcini
,
M.
, and
Pacciani
,
R.
,
2020
, “
Computational and Experimental Study of Hot Streak Transport Within the First Stage of a Gas Turbine
,”
ASME J. Turbomach.
,
142
(
8
), p.
081002
.
12.
Giusti
,
A.
,
Worth
,
N. A.
,
Mastorakos
,
E.
, and
Dowling
,
A. P.
,
2017
, “
Experimental and Numerical Investigation Into the Propagation of Entropy Waves
,”
AIAA J.
,
55
(
2
), pp.
446
458
.
13.
Gaetani
,
P.
, and
Persico
,
G.
,
2018
, “
Transport of Entropy Waves Within a HP Turbine Stage
,”
ASME J. Turbomach.
,
141
(
3
), p.
031006
.
14.
Pinelli
,
L.
,
Marconcini
,
M.
,
Pacciani
,
R.
,
Gaetani
,
P.
, and
Persico
,
G.
,
2021
, “
Computational and Experimental Study of the Unsteady Convection of Entropy Waves Within a High-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
143
(
9
), p.
091011
.
15.
Kaji
,
S.
, and
Okazaki
,
T.
,
1970
, “
Generation of Sound by Rotor–Stator Interation
,”
J. Sound Vib.
,
13
(
3
), pp.
281
307
.
16.
Rahim
,
A.
, and
He
,
L.
,
2015
, “
Rotor Blade Heat Transfer of High Pressure Turbine Stage Under Inlet Hot-Streak and Swirl
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6
), p.
062601
.
17.
Adams
,
M. G.
,
Povey
,
T.
,
Hall
,
B. F.
,
Cardwell
,
D. N.
,
Chana
,
K. S.
, and
Beard
,
P. F.
,
2020
, “
Commissioning of a Combined Hot-Streak and Swirl Profile Generator in a Transonic Turbine Test Facility
,”
ASME J. Eng. Gas Turbines Power
,
142
(
3
), p.
031008
.
18.
Adams
,
M. G.
,
Beard
,
P. F.
,
Stokes
,
M. R.
,
Wallin
,
F.
,
Chana
,
K. S.
, and
Povey
,
T.
,
2021
, “
Effect of a Combined Hot-Streak and Swirl Profile on Cooled 1.5-Stage Turbine Aerodynamics: An Experimental and Computational Study
,”
ASME J. Turbomach.
,
143
(
2
), p.
021011
.
19.
Notaristefano
,
A.
, and
Gaetani
,
P.
,
2020
, “
Design and Commissioning of a Combustor Simulator Combining Swirl and Entropy Wave Generation
,”
Int. J. Turbomach. Propul. Power
,
5
(
4
), p.
27
.
20.
Notaristefano
,
A.
, and
Gaetani
,
P.
,
2021
, “
Impact of Swirling Entropy Waves on a High Pressure Turbine
,”
ASME J. Turbomach.
,
144
(
3
), p.
031010
.
21.
Bicchi
,
M.
,
Pinelli
,
L.
,
Marconcini
,
M.
,
Gaetani
,
P.
, and
Persico
,
G.
,
2019
, “
Numerical Study of a High-Pressure Turbine Stage With Inlet Distortions
,”
AIP Conf. Proc.
,
2191
(
1
), p.
020020
.
22.
Pinelli
,
L.
,
Marconcini
,
M.
,
Pacciani
,
R.
,
Bake
,
F.
,
Knobloch
,
K.
,
Gaetani
,
P.
, and
Persico
,
G.
,
2022
, “
Effect of Clocking on Entropy Noise Generation Within An Aeronautical High Pressure Turbine Stage
,”
J. Sound Vib.
,
529
(
1
), p.
116900
.
23.
Notaristefano
,
A.
,
Gaetani
,
P.
,
Dossena
,
V.
, and
Fusetti
,
A.
,
2021
, “
Uncertainty Evaluation on Multi-Hole Aerodynamic Pressure Probes
,”
ASME J. Turbomach.
,
143
(
9
), p.
091001
.
24.
Gaetani
,
P.
,
Persico
,
G.
, and
Guardone
,
A.
,
2005
, “
Design and Analysis of New Concept Fast-Response Pressure Probes
,”
Meas. Sci. Technol.
,
16
(
9
), p.
1741
.
25.
Arnone
,
A.
,
1994
, “
Viscous Analysis of Three-Dimensional Rotor Flow Using a Multigrid Method
,”
ASME J. Turbomach.
,
116
(
3
), pp.
435
445
.
26.
Pacciani
,
R.
,
Marconcini
,
M.
, and
Arnone
,
A.
,
2019
, “
Comparison of the AUSM+-up and Other Advection Schemes for Turbomachinery Applications
,”
Shock Waves
,
29
(
1
), pp.
705
716
.
27.
Pacciani
,
R.
,
Marconcini
,
M.
,
Bertini
,
F.
,
Rosa Taddei
,
S.
,
Spano
,
E.
,
Zhao
,
Y.
,
Akolekar
,
H. D.
,
Sandberg
,
R. D.
, and
Arnone
,
A.
,
2021
, “
Assessment of Machine-Learned Turbulence Models Trained for Improved Wake-Mixing in Low-Pressure Turbine Flows
,”
Energies
,
14
(
24
), p.
8327
.
28.
Pinelli
,
L.
,
Poli
,
F.
,
Di Grazia
,
E.
,
Arnone
,
A.
, and
Torzo
,
D.
,
2013
, “
A Comprehensive Numerical Study of Tone Noise Emissions in a Multistage Cold Flow Rig
,”
19th AIAA/CEAS Aeroacoustic Conference
,
Berlin, Germany
,
May 27–29
, AIAA Paper No. 2013-2104.
29.
Pinelli
,
L.
,
Lori
,
F.
,
Marconcini
,
M.
,
Pacciani
,
R.
, and
Arnone
,
A.
,
2021
, “
Validation of a Modal Work Approach for Forced Response Analysis of Bladed Disks
,”
Appl. Sci.
,
11
(
12
), p.
5437
.
30.
Pinelli
,
L.
,
Amedei
,
A.
,
Meli
,
E.
,
Vanti
,
F.
,
Romani
,
B.
,
Benvenuti
,
G.
,
Fabbrini
,
M.
,
Morganti
,
N.
,
Rindi
,
A.
, and
Arnone
,
A.
,
2021
, “
Innovative Design, Structural Optimization, and Additive Manufacturing of New-Generation Turbine Blades
,”
ASME J. Turbomach.
,
144
(
1
), p.
011006
.
31.
Burberi
,
C.
,
Ghignoni
,
E.
,
Pinelli
,
L.
, and
Marconcini
,
M.
,
2018
, “
Validation of an URANS Approach for Direct and Indirect Noise Assessment in a High Pressure Turbine Stage
,”
Energy Procedia
,
148
(
1
), pp.
130
137
.
32.
Giovannini
,
M.
,
Marconcini
,
M.
,
Arnone
,
A.
, and
Bertini
,
F.
,
2014
, “
Evaluation of Unsteady CFD Models Applied to the Analysis of a Transonic High-Pressure Turbine Stage
,”
P. I. Mech. Eng. A-J. Pow.
,
228
(
7
), pp.
813
824
.
33.
Giles
,
M. B.
,
1990
, “
Nonreflecting Boundary Conditions for Euler Equation Calculations
,”
AIAA J.
,
28
(
12
), pp.
2050
2058
.
You do not currently have access to this content.