Abstract

Turbocharging is the key technique to improve engine-specific power and reduce CO2 emissions of a piston-driven engine. Repeated actions of engine pistons and valves give rise to engine pulsations resulting in intensive unsteady flow in the turbines. Understanding the pulsation effects on a turbine that is steady flow designed is crucially important for performance enhancement. The present work derives an equation that is capable of evaluating the pulsation effects on the volute-outlet flow angle. Based on the equation, a reduced-order model (1D) is proposed and applied to a single-entry mixed flow turbine. By comparing to 3D unsteady computational fluid dynamics (CFD), the ability and accuracy of the 1D model on predicting the unsteady volute-outlet flow angle are verified. The effects of the unsteady flow angle on the turbine performance are further investigated by comparing unsteady and quasi-steady flow-field characteristics given by 3D CFD. The present work unveils the volute unsteady behavior and explains the unsteady coupling mechanism between the volute and the rotor. The findings can lead to improvement of turbine design methodology under pulsating flow conditions.

References

1.
IEA
,
2018
,
Emissions From Fuel Combustion: Highlights
,
International Energy Agency
,
Paris
.
2.
Leduc
,
P.
,
Dubar
,
B.
,
Ranini
,
A.
, and
Monnier
,
G.
,
2006
, “
Downsizing of Gasoline Engine:an Efficient Way to Reduce CO2 Emissions
,”
Oil Gas Sci. Technol.
,
58
(
1
), pp.
115
127
.
3.
Dale
,
A.
, and
Watson
,
N.
,
1986
, “
Vaneless Radial Turbocharger Turbine Performance
,”
ImechE Conference Transactions; Turbochargers and Turbocharging
,
London, UK
,
May 6–8
, pp.
65
76
.
4.
Su
,
C. C.
,
1999
,
“Flow Characteristics and Performance of Mixed-Flow Turbines
,” Ph.D. Thesis,
Imperial College London
,
London
.
5.
Karamanis
,
N.
,
Martinez-Botas
,
R.
, and
Su
,
C. C.
,
2001
, “
Mixed Flow Turbines: Inlet and Exit Flow Under Steady and Pulsating Conditions
,”
ASME J. Turbomach.
,
123
(
2
), pp.
359
371
.
6.
Szymko
,
S.
,
McGlashan
,
N. R.
,
Martinez-Botas
,
R.
, and
Pullen
,
K. R.
,
2007
, “
The Development of a Dynamometer for Torque Measurement of Automotive Turbocharger Turbines
,”
Proc. Inst. Mech. Eng. Part D: J. Autom. Eng.
,
221
(
2
), pp.
225
239
.
7.
Baines
,
N. C.
,
Hajilouy-Benisi
,
A.
, and
Yeo
,
J. H.
,
1994
, “
The Pulse Flow Performance and Modelling of Radial Inflow Turbines
,”
Inst. Mech. Eng. Conf. Publ.
,
6
, pp.
209
219
.
8.
Capobianco
,
M.
, and
Marelli
,
S.
,
2011
, “
Experimental Analysis of Unsteady Flow Performance in an Automotive Turbocharger Turbine Fitted With a Waste-Gate Valve
,”
Proc. Inst. Mech. Eng. Part D: J. Autom. Eng.
,
225
(
8
), pp.
1087
1097
.
9.
Copeland
,
C. D.
,
2010
, “
Evaluation of Steady and Pulsating Flow Performance of a Double-Entry Turbocharger Turbine
,” Ph.D. Thesis,
Imperial College London
,
London
.
10.
Shi
,
X.
,
Zhang
,
R.
,
Yu
,
L. G.
, and
Ma
,
C. C.
,
2014
, “
Experimental Investigation on the Unsteady Performance of Automotive Turbocharger Turbine
,”
Exp. Tech.
,
38
(
6
), pp.
21
29
.
11.
Xue
,
Y.
,
Yang
,
M.
,
Martinez-Botas
,
R.
,
Yang
,
B.
, and
Deng
,
K.
,
2019
, “
Unsteady Performance of a Mixed-Flow Turbine With Nozzled Twin-Entry Volute Confronted by Pulsating Incoming Flow
,”
Aerosp. Sci. Technol.
,
95
, p.
105485
.
12.
Chen
,
H.
,
Hakeem
,
I.
, and
Martinez-Botas
,
R.
,
1996
, “
Modelling of a Turbocharger Turbine Under Pulsating Inlet Conditions
,”
J. Power Energy
,
210
(
5
), pp.
397
408
.
13.
Costall
,
A.
,
Szymko
,
S.
,
Martinez-Botas
,
R.
,
Filsinger
,
D.
, and
Ninkovic
,
D.
,
2006
, “
Assessment of Unsteady Behavior in Turbocharger Turbines
,”
ASME Turbo Expo
,
Barcelona, Spain
,
May 6–11
, Vol.
6
, pp.
1023
1038
.
14.
GT Suite: FLow Theory Manual
,” Tech. Rep.,
Gamma Technology
.
15.
Copeland
,
C.
,
Martinez-Botas
,
R.
,
Newton
,
P.
, and
Seiler
,
M.
,
2012
, “
A Comparison of Timescales Within a Pulsed Flow Turbocharger Turbine
,”
10th International Conference on Turbochargers and Turbochrging
,
London, UK
,
May 15–16
, pp.
389
404
.
16.
Yang
,
M.
,
Martinez-Botas
,
R.
,
Rajoo
,
S.
,
Yokoyama
,
T.
, and
Ibaraki
,
S.
,
2015
, “
An Investigation of Volute Cross-Sectional Shape on Turbocharger Turbine Under Pulsating Conditions in Internal Combustion Engine
,”
Energy Convers. Manage.
,
105
(
15
), pp.
167
177
.
17.
Palfreyman
,
D.
, and
Martinez-Botas
,
R. F.
,
2005
, “
The Pulsating Flow Field in a Mixed Flow Turbocharger Turbine: An Experimental and Computational Study
,”
ASME J. Turbomach.
,
127
(
1
), pp.
144
155
.
18.
Newton
,
P.
,
Martinez-Botas
,
R.
, and
Martin
,
S.
,
2015
, “
A Three-Dimensional Computational Study of Pulsating Flow Inside a Double Entry Turbine
,”
ASME J. Turbomach.
,
137
(
3
), pp.
144
155
.
19.
Yang
,
B.
,
Martinez-Botas
,
R.
, and
Yang
,
M.
,
2021
, “
Rotor Flow-Field Timescale and Unsteady Effects on Pulsed-Flow Turbocharger Turbine
,”
Aerosp. Sci. Technol.
,
120
, p.
107231
.
20.
Brochier
,
G.
,
Fraunie
,
P.
,
Beguier
,
C.
, and
Paraschivoiu
,
I.
,
1986
, “
Water Channel Experiments of Dynamic Stall on Darrieus Wind Turbine Blades
,”
J. Propul. Power
,
2
(
5
), pp.
445
449
.
21.
McCroskey
,
W. J.
,
Carr
,
L. W.
, and
McAlister
,
K. W.
,
1976
, “
Dynamic Stall Experiments on Oscillating Airfoils
,”
AIAA J.
,
14
(
1
), pp.
57
63
.
22.
Whitfield
,
A.
,
MacGregor
,
S. A.
, and
Noor
,
A. M.
,
1994
, “
Design and Performance of Vaneless Volutes for Radial Inflow Turbines: Part 2: Experimental Investigation of the Mean Line Performance—Assessment of Empirical Design Parameters
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
208
(
3
), pp.
213
224
.
23.
Japikse
,
D.
, and
Baines
,
N. C.
,
1994
,
Introduction to Turbomachinery
,
Concepts Eti
,
Norwich, VT
.
24.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
International Gas Turbine and Aeroengine Congress and Exposition
,
Cincinnati, OH
,
May 24–27
, 93-GT-435.
25.
Sieverding
,
C. H.
,
1985
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
248
257
.
26.
Yang
,
B.
,
Newton
,
P.
, and
Martinez-Botas
,
R.
,
2020
, “
Understanding of Secondary Flows and Losses in Radial and Mixed Flow Turbines
,”
ASME J. Turbomach.
,
142
(
9
), p.
081006
.
27.
Hohenberg
,
K. G.
,
2020
, “
Novel Methodology for the Optimisation of Turbocharger Turbine Design for Improved Engine Performance
,” Ph.D. Thesis,
Imperial College London
,
London
.
28.
Yang
,
M.
,
Martinez-Botas
,
R.
,
Rajoo
,
S.
,
Ibaraki
,
S.
,
Yokoyama
,
T.
, and
Deng
,
K.
,
2017
, “
Unsteady Behaviours of a Volute in Turbocharger Turbine Under Pulsating Conditions
,”
J. Global Power Propul. Soc.
,
1
, pp.
237
251
.
29.
Yang
,
B.
, and
Martinez-Botas
,
R.
,
2019
, “
TURBODYNA: Centrifugal/Centripetal Turbomachinery Dynamic Simulator and Its Application on a Mixed Flow Turbine
,”
ASME J. Eng. Gas Turbines Power
,
141
(
10
), p.
101012
.
30.
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Graf
,
M. B.
,
2007
,
Internal Flow: Concepts and Applications
,
Cambridge University Press
,
Cambridge
.
31.
Goldstein
,
M. E.
,
1976
,
Aeroacoustics
,
McGraw-Hill
,
New York
.
32.
Roe
,
P.
,
1981
, “
Approximate Riemann Solvers, Parameter and Difference Schemes
,”
J. Comput. Phys.
,
372
(
2
), pp.
357
372
.
33.
Poinsot
,
T. J.
, and
Lelef
,
S. K.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.
34.
Thompson
,
K. W.
,
1987
, “
Time Dependent Boundary Conditions for Hyperbolic Systems
,”
J. Comput. Phys.
,
68
(
1
), pp.
1
24
.
35.
Abidat
,
M.
,
1991
, “
Design and Testing of a Highly Loaded Mixed Flow Turbine
,” Ph.D. Thesis,
Imperial College London
,
London
.
36.
Karamanis
,
N.
,
2000
, “
Inlet and Exit Flow Characteristics of Mixed Flow Turbines in Advanced Automotive Turbocharging
,” Ph.D. Thesis,
Imperial College London
,
London
.
37.
Newton
,
P.
,
Martinez-Botas
,
R.
, and
Seiler
,
M.
,
2015
, “
A Three-Dimensional Computational Study of Pulsating Flow Inside a Double Entry Turbine
,”
ASME J. Turbomach.
,
137
(
3
), pp.
144
155
.
38.
Herwig
,
H.
,
2007
, “
Direct and Indirect Methods of Calculating Entropy Generation Rates in Turbulent Convective Heat Transfer Problems
,”
Heat Mass Transfer
,
43
(
3
), pp.
207
215
.
39.
Newton
,
P.
,
Palenschat
,
T.
,
Martinez-Botas
,
R.
, and
Seiler
,
M.
,
2015
, “
Entropy Generation Rate in a Mixed Flow Turbine Passage
,”
International Gas Turbine Congress
,
Tokyo, Japan
,
Nov. 15–20
.
You do not currently have access to this content.