Abstract

The operating range of a compressor is limited by surge or rotating stall line, among others. Numerical simulations must accurately predict these phenomena. This study is based on the experimental compressor CME2, which is a low-subsonic axial compressor. This compressor is tip-critical as the rotor tip is responsible for the rotating stall. This paper shows that the rotating stall onset flow rate is well captured by computational fluid dynamics, compared to experiments. After ten revolutions, all cells are merged and only one cell remains, as in experiments. Active flow control improves compressor performance and extends the stable operating range. In the present configuration, flow injection is performed at the casing. In the simulation, the insertion of the actuators is carried out through hybrid meshes: structured mesh for blade passages and unstructured mesh for each actuator. For the some stalled operating points of baseline configuration, there is no rotating cells in the controlled configuration. Thus, the rotating stall is delayed at lower flow rate, as expected by the use of active flow control and is in agreement with the experiments.

References

1.
Poensgen
,
C. A.
, and
Gallus
,
H. E.
,
1996
, “
Rotating Stall in a Single-Stage Axial Flow Compressor
,”
ASME J. Turbomach.
,
118
(
2
), pp.
189
196
.
2.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Yoshida
,
S.
, and
Furukawa
,
M.
,
2002
, “
Short and Long Length-Scale Disturbances Leading to Rotating Stall in an Axial Compressor Stage With Different Stator/Rotor Gaps
,”
ASME J. Turbomach.
,
124
(
3
), pp.
376
384
.
3.
Hewkin-Smith
,
M.
,
Pullan
,
G.
,
Grimshaw
,
S. D.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2019
, “
The Role of Tip Leakage Flow in Spike-Type Rotating Stall Inception
,”
ASME J. Turbomach.
,
141
(
6
), p.
061010
.
4.
Dodds
,
J.
, and
Vahdati
,
M.
, “
Rotating Stall Observations in a High Speed Compressor—Part I: Experimental Study
,”
ASME J. Turbomach.
,
137
(
5
), p.
051002
.
5.
Dodds
,
J.
, and
Vahdati
,
M.
,
2015
, “
Rotating Stall Observations in a High Speed Compressor—Part II: Numerical Study
,”
ASME J. Turbomach.
,
137
(
5
), p.
051003
.
6.
Marconcini
,
M.
,
Bianchini
,
A.
,
Checcucci
,
M.
,
Ferrara
,
G.
,
Arnone
,
A.
,
Ferrari
,
L.
,
Biliotti
,
D.
, and
Rubino
,
D. T.
,
2017
, “
A Three-Dimensional Time-Accurate Computational Fluid Dynamics Simulation of the Flow Field Inside a Vaneless Diffuser During Rotating Stall Conditions
,”
ASME J. Turbomach.
,
139
(
2
), p.
021001
.
7.
Choi
,
M.
,
Smith
,
N. H. S.
, and
Vahdati
,
M.
,
2013
, “
Validation of Numerical Simulation for Rotating Stall in a Transonic Fan
,”
ASME J. Turbomach.
,
135
(
2
), p.
021004
.
8.
D’Andrea
,
R.
,
Behnken
,
R. L.
, and
Murray
,
R. M.
,
1997
, “
Rotating Stall Control of an Axial Flow Compressor Using Pulsed Air Injection
,”
ASME J. Turbomach.
,
119
(
4
), pp.
742
752
.
9.
Margalida
,
G.
,
Joseph
,
P.
,
Roussette
,
O.
, and
Dazin
,
A.
,
2021
, “
Active Flow Control in an Axial Compressor for Stability Improvement: On the Effect of Flow Control on Stall Inception
,”
Exp. Fluids
,
62
(
1
), p.
12
.
10.
Weigl
,
H. J.
,
Paduano
,
J. D.
,
Fréchette
,
L. G.
,
Epstein
,
A. H.
,
Greitzer
,
E. M.
,
Bright
,
M. M.
, and
Strazisar
,
A. J.
,
1998
, “
1997 Best Paper Award—Controls and Diagnostics Committee: Active Stabilization of Rotating Stall and Surge in a Transonic Single-Stage Axial Compressor
,”
ASME J. Turbomach.
,
120
(
4
), pp.
625
636
.
11.
Bae
,
J. W.
,
Breuer
,
K. S.
, and
Tan
,
C. S.
,
2005
, “
Active Control of Tip Clearance Flow in Axial Compressors
,”
ASME J. Turbomach.
,
127
(
2
), pp.
352
362
.
12.
Ashrafi
,
F.
,
Michaud
,
M.
, and
Duc Vo
,
H.
,
2016
, “
Delay of Rotating Stall in Compressors Using Plasma Actuators
,”
ASME J. Turbomach.
,
138
(
9
), p.
091009
.
13.
Marty
,
J.
,
Castillon
,
L.
,
Boniface
,
J.-C.
,
Burguburu
,
S.
, and
Godard
,
A.
,
2013
, “
Numerical and Experimental Investigations of Flow Control in Axial Compressors
,”
Aerospace Lab.
,
6
(
9
), pp.
1
13
.
14.
Halawa
,
T.
,
Gadala
,
M. S.
,
Alqaradawi
,
M.
, and
Badr
,
O.
,
2015
, “
Optimization of the Efficiency of Stall Control Using Air Injection for Centrifugal Compressors
,”
ASME J. Eng. Gas Turbines Power.
,
137
(
7
), p.
072604
.
15.
Gmelin
,
C.
,
Zander
,
V.
,
Hecklau
,
M.
,
Thiele
,
F.
,
Nitsche
,
W.
,
Huppertz
,
A.
, and
Swoboda
,
M.
,
2012
, “
Active Flow Control Concepts on a Highly Loaded Subsonic Compressor Cascade: Résumé of Experimental and Numerical Results
,”
ASME J. Turbomach.
,
134
(
6
), p.
061021
.
16.
Day
,
I. J.
,
2016
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
011001
.
17.
Cambier
,
L.
, and
Gazaix
,
M.
,
2002
, “
elsA: an Efficient Object-Oriented Solution to CFD Complexity
,”
Proceedings of the 40th AIAA Aerospace Science Meeting & Exhibit
,
Reno, NV
,
Jan. 14–17
,
AIAA 2002-0108
.
18.
Cambier
,
L.
, and
Veuillot
,
J. P.
,
2008
, “
Status of the ElsA CFD Software for the Flow Simulation and Multidisciplinary Applications
,”
Proceedings of the 48th AIAA Aerospace Science Meeting & Exhibit.
,
Reno, NV
,
Jan. 7–10
.
19.
Cambier
,
L.
,
Heib
,
S.
, and
Plot
,
S.
,
2013
, “
The Onera elsACFD Software: Input From the Research and Feedback From Industry
,”
Mech. Ind.
,
14
(
3
), pp.
159
174
.
20.
de la Llave Plata
,
M.
,
Couaillier
,
V.
,
Le Pape
,
M. C.
, and
Marmignon
,
C.
,
2011
, “
elsA-Hybrid: An All-in-One Structured/Unstructured Solver for the Simulation of Internal and External Flows. Application to Turbomachinery
,”
Proceedings of the 4th EUCASS Conference
,
Saint-Petersburg, Russia
,
July
.
21.
Soismier
,
M.
,
Corre
,
C.
,
Castillon
,
L.
, and
Marmignon
,
C.
,
2015
, “
Improvements in the Multiblock Hybrid CFD Solver ElsA-H for Turbomachinery Flow Simulation
,”
Proceedings of the 12th International Symposium on Experimental and Computational Aerothermic of Internal Flows.
,
Lerici, Italy
,
July 13–16
,
ISAIF12_125
.
22.
Baretter
,
A.
,
Godard
,
B.
,
Joseph
,
P.
,
Roussette
,
O.
,
Romanò
,
F.
,
Barrier
,
R.
, and
Dazin
,
A.
, “
Experimental and Numerical Analysis of a Compressor Stage Under Flow Distortion
,”
Int. J. Turbomach. Propuls. Power
,
6
(
4
), p.
43
.
23.
Castillon
,
L.
,
Soismier
,
M.
,
Le Pape
,
M. C.
,
Maugars
,
B.
, and
Michel
,
B.
,
2019
, “
A Hybrid Structured/Non Structured Grid Strategy for the CFD Modeling of Technological Effects on Complex Turbomachinery Applications
,”
24th ISABE Conference
,
Canberra, Australia
,
Sept. 23–27
.
24.
Castillon
,
L.
,
Billonnet
,
G.
,
Riou
,
J.
,
Péron
,
S.
, and
Benoit
,
C.
,
2014
, “
A Technological Effect Modeling on Complex Turbomachinery Applications With an Overset Grid Numerical Method
,”
ASME J. Turbomach.
,
136
(
10
), p.
101005
.
25.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors and Difference Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
372
.
26.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
La Rech. Aerosp.
,
1
, pp.
5
21
.
27.
Gourdain
,
N.
,
Burguburu
,
S.
,
Leboeuf
,
F.
, and
Miton
,
H.
,
2006
, “
Numerical Simulation of Rotating Stall in a Subsonic Compressor
,”
Aerosp. Sci. Technol.
,
10
(
1
), pp.
9
18
.
You do not currently have access to this content.