Abstract

The flow through the predominantly two-dimensional geometries of cascades of blades is intrinsically three-dimensional and unsteady. Direct Numerical Simulation, Large Eddy Simulations, and time-resolved Particle Image Velocimetry provide access to the full flow physics, relevant to aerodynamic loss and heat management. Such studies build upon earlier insight drawn from quasi-two-dimensional investigations that identified the key areas where progress in understanding was most needed. These areas stretch across the full passage, from the leading edge of the blade to the passage outflow. Streamwise surface vorticity, transition, the calmed region, shock–boundary layer interaction, and vortex shedding are considered in detail, specifically (i) on what gaps in their physical understanding the works of Jonathan Paul Gostelow exposed and (ii) what gaps were present in the two-dimensional computational approaches used to represent these flows in these works. These useful insights are obtained from the geometrically simpler settings of circular cylinders in cross-flow and from flat plate experiments, as well as from cascades of blades. This paper presents an overview of the physical understanding of the flow features that underpins the more recent time-resolved three-dimensional investigations, led by the late Emeritus Professor Jonathan Paul Gostelow. This work celebrates some of Paul Gostelow’s 50 + years of turbomachinery research achievements and develops awareness about their significance toward reaching a more complete knowledge of the flow physics in turbomachinery, using the more recent time-resolved three-dimensional modeling capability of Computational Fluid Dynamics.

References

1.
Gostelow
,
J. P.
,
1965
, “
Potential Flow Through Cascades a Comparison Between Exact and Approximate Solutions
,” Aeronautical Research Council, Paper No. 807.
2.
Gostelow
,
J. P.
,
1973
, “
Review of Compressible Flow Theories for Airfoil Cascades
,”
J. Eng. Power
,
95
(
4
), pp.
281
292
.
3.
Gostelow
,
J. P.
,
1984
,
Cascade Aerodynamics
,
Pergamon Press
,
Oxford [Oxfordshire], New York
.
4.
Gostelow
,
J. P.
,
Mahallati
,
A.
, and
Rona
,
A.
,
2016
, “
Some Issues and Developments in Analytical and Experimental Work on Turbine Blade Flows
,”
Proceedings of the 16th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, ISROMAC
,
Honolulu, HI
,
Apr. 10–15
, pp.
1
8
.
5.
Menter
,
F. R.
, and
Langtry
,
R. B.
,
2012
, “Transition Modelling for Turbomachinery Flows,”
Low Reynolds Number Aerodynamics and Transition
,
M. S.
Genz
, ed.,
Intech
,
Rijeka
, pp.
31
58
.
6.
Mukund
,
R.
,
Viswanath
,
P.
,
Narasimha
,
R.
,
Prabhu
,
A.
, and
Crouch
,
J.
,
2006
, “
Relaminarization in Highly Favourable Pressure Gradients on a Convex Surface
,”
J. Fluid Mech.
,
566
, pp.
97
115
.
7.
Mohsen
,
J.
,
2011
,
Boundary Layer Transitional Flow in Gas Turbines
,
Chalmers University of Technology
,
Gothenburg, Sweden
. https://research.chalmers.se/publication/136590
8.
Halstead
,
D. E.
,
1989
,
The Use of Surface-Mounted Hot-Film Sensors to Detect Turbine-Blade Boundary-Layer Transition and Separation, M.S. Thesis, Iowa State University. https://www.researchgate.net/publication/36060931_The_use_of_surface-mounted_hot-film_sensors_to_detect_turbine-blade_boundary-layer_transition_and_separation
9.
Lobo
,
B. A.
,
Schaffarczyk
,
A. P.
, and
Breuer
,
M.
,
2022
, “
Investigation Into Boundary Layer Transition Using Wall-Resolved LES and Modeled Inflow Turbulence
,”
Wind Energy Sci.
,
7
(
3
), pp.
967
990
.
10.
Breuer
,
M.
,
2018
, “
Effect of Inflow Turbulence on an Airfoil Flow With Laminar Separation Bubble: An LES Study
,”
Flow, Turbul. Combust.
,
101
(
2
), pp.
433
456
.
11.
Zilstra
,
A.
, and
Johnson
,
D. A.
,
2023
, “
Large Eddy Simulation of Transitional Separated Flow Over a Low Reynolds Number Cambered Airfoil
,”
ASME J. Fluids Eng.
,
145
(
3
), p.
031303
.
12.
Li
,
H. J.
, and
Yang
,
Z.
,
2019
, “
Separated Boundary Layer Transition Under Pressure Gradient in the Presence of Free-Stream Turbulence
,”
Phys. Fluids
,
31
(
10
), p.
104106
.
13.
Lardeau
,
S.
,
Leschziner
,
M.
, and
Zaki
,
T.
,
2012
, “
Large Eddy Simulation of Transitional Separated Flow Over a Flat Plate and a Compressor Blade
,”
Flow, Turbul. Combust.
,
88
(
1–2
), pp.
19
44
.
14.
Narasimha
,
R.
,
1957
, “
On the Distribution of Intermittency in the Transition Region of the Boundary Layer
,”
J. Aeronaut. Sci.
,
24
(
9
), pp.
711
712
.
15.
Sandberg
,
R. D.
,
Michelassi
,
V.
,
Pichler
,
R.
,
Chen
,
L.
, and
Johnstone
,
R.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part I: Methodology
,”
ASME J. Turbomach.
,
137
(
5
), p.
051011
.
16.
Schubauer
,
G. B.
, and
Klebanoff
,
P. S.
,
1956
,
Contributions on the Mechanics of Boundary Layer Transition
, Vol.
1289
,
NACA
,
National Bureau of Standards, United States
.
17.
Smith
,
A. M. O.
, and
Gamberoni
,
N.
,
1956
, “
Transition, Pressure Gradient and Stability Theory
,” Douglas Aircraft Company, El Segundo Division.
18.
van Ingen
,
J. L.
,
1956
, “
A Suggested Semi-Empirical Method for the Calculation of the Boundary Layer Transition Region
,” V. Technische Hogeschool Delft, Rapport VTH-74. http://resolver.tudelft.nl/uuid:cff1fb47-883f-4cdc-ad07-07d264f3fd10
19.
Morkovin
,
M. V.
,
1969
, “On the Many Faces of Transition,”
Viscous Drag Reduction
,
C. S.
Wells
, ed.,
Springer
,
Boston, MA
.
20.
Wissink
,
J. G.
, and
Rodi
,
W.
,
2006
, “
Direct Numerical Simulations of Transitional Flow in Turbomachinery
,”
ASME J. Turbomach.
,
128
(
4
), pp.
668
678
.
21.
Durbin
,
P. A.
,
Zaki
,
T. A.
, and
Liu
,
Y.
,
2009
, “
Interaction of Discrete and Continuous Boundary Layer Modes to Cause Transition
,”
Int. J. Heat Fluid Flow
,
30
(
3
), pp.
403
410
.
22.
Schlichting
,
H.
,
1979
,
Boundary-Layer Theory
, 7th ed.,
McGraw-Hill Science, Engineering and Mathematics
,
New York
.
23.
Emmons
,
H. W.
,
1951
, “
The Laminar-Turbulent Transition in a Boundary Layer—Part 1
,”
J. Aeronaut. Sci.
,
18
(
7
), pp.
490
498
.
24.
Mandal
,
A. C.
,
Venkatakrishnan L
,
A. C.
, and
Dey
,
J.
,
2010
, “
A Study on Boundary-Layer Transition Induced by Free-Stream Turbulence
,”
J. Fluid Mech.
,
660
, pp.
114
146
.
25.
Solomon
,
W. J.
,
Walker
,
G. J.
, and
Gostelow
,
J. P.
,
1995
, “
Transition Length Prediction for Flows With Rapidly Changing Pressure Gradients
,”
Turbo Expo: Power for Land, Sea, and Air
,
American Society of Mechanical Engineers
, Paper No. 95-GT-241.
26.
Walker
,
G. J.
,
1989
, “
Transitional Flow on Axial Turbomachine Blading
,”
AIAA J.
,
27
(
5
), pp.
595
602
.
27.
Gostelow
,
J. P.
,
Blunden
,
A. R.
, and
Walker
,
G. J.
,
1994
, “
Effects of Free-Stream Turbulence and Adverse Pressure Gradients on Boundary Layer Transition
,”
ASME J. Turbomach.
,
116
(
3
), pp.
392
404
.
28.
Solomon
,
W. J.
,
Walker
,
G. J.
, and
Gostelow
,
J. P.
,
1996
, “
Transition Length Prediction for Flows With Rapidly Changing Pressure Gradients
,”
ASME J. Turbomach.
,
118
(
4
), pp.
744
751
.
29.
Hobson
,
G. V.
, and
Weber
,
S.
,
2000
, “
Prediction of a Laminar Separation Bubble With Transition Over a Controlled-Diffusion Compressor Blade
,”
ASME Turbo Expo 2000: Power for Land, Sea, and Air
,
Munich, Germany
,
May 8–11
, pp. V003T01A081; 1–9.
30.
Sanz
,
W.
, and
Platzer
,
M. F.
,
1998
, “
On the Navier–Stokes Calculation of Separation Bubbles With a New Transition Model
,”
ASME J. Turbomach.
,
120
(
1
), pp.
36
42
.
31.
Dey
,
J.
, and
Narasimha
,
R.
,
1990
, “
Integral Method for the Calculation of Incompressible Two-Dimensional Transitional Boundary Layers
,”
J. Aircr.
,
27
(
10
), pp.
859
865
.
32.
Perkins
,
H. J.
,
1970
, “
The Formation of Streamwise Vorticity in Turbulent Flow
,”
J. Fluid Mech.
,
44
(
4
), pp.
721
740
.
33.
Singer
,
B. A.
,
Reed
,
H. L.
, and
Ferziger
,
J. H.
,
1989
, “
The Effects of Streamwise Vortices on Transition in the Plane Channel
,”
Phys. Fluids A
,
1
(
12
), pp.
1960
1971
.
34.
Diwan
,
S. S.
, and
Ramesh
,
O. N.
,
2009
, “
On the Origin of the Inflectional Instability of a Laminar Separation Bubble
,”
J. Fluid Mech.
,
629
, pp.
263
298
.
35.
Dean
,
R. C.
,
1959
, “
On the Necessity of Unsteady Flow in Fluid Machines
,”
ASME J. Basic Eng.
,
81
(
1
), pp.
24
28
.
36.
Van Hest
,
B. F. A.
,
1996
, “
Laminar-Turbulent Transition in Boundary Layers with Adverse Pressure Gradient
,” Doctoral thesis, Delft University of Technology. http://resolver.tudelft.nl/uuid:bd54ed1a-a450-456c-bb95-d89a64695bbf
37.
Fasihfar
,
A.
, and
Johnson
,
M. W.
,
1992
, “
An Improved Boundary Layer Transition Correlation
,”
Turbo Expo: Power for Land, Sea, and Air
,
Germany
,
June 1–4
, V004T09A025, pp.
1
7
.
38.
Gostelow
,
J. P.
,
Melwani
,
N.
, and
Walker
,
G. J.
,
1996
, “
Effects of Streamwise Pressure Gradient on Turbulent Spot Development
,”
ASME J. Turbomach.
,
118
(
4
), pp.
737
743
.
39.
Gostelow
,
J. P.
, and
Thomas
,
R. L.
,
2005
, “
Response of a Laminar Separation Bubble to an Impinging Wake
,”
ASME J. Turbomach.
,
127
(
1
), pp.
35
42
.
40.
Seifert
,
A.
, and
Wygnanski
,
I. J.
,
1995
, “
On Turbulent Spots in a Laminar Boundary Layer Subjected to a Self-Similar Adverse Pressure Gradient
,”
J. Fluid Mech.
,
296
, pp.
185
209
.
41.
Gostelow
,
J. P.
,
Walker
,
G. J.
,
Solomon
,
W. J.
,
Hong
,
G.
, and
Melwani
,
N.
,
1997
, “
Investigation of the Calmed Region Behind a Turbulent Spot
,”
ASME J. Turbomach.
,
119
(
4
), pp.
802
809
.
42.
Gutmark
,
E.
, and
Blackwelder
,
R. F.
,
1987
, “
On the Structure of a Turbulent Spot in a Heated Laminar Boundary Layer
,”
Exp. Fluids
,
5
(
4
), pp.
217
229
.
43.
Gostelow
,
J. P.
,
Thomas
,
R. L.
, and
Adebayo
,
D. S.
,
2009
, “
On the Response of a Strongly Diffusing Flow to Propagating Wakes
,”
ASME J. Turbomach.
,
131
(
2
), p.
021006
.
44.
Gostelow
,
J. P.
,
Mahallati
,
A.
,
Carscallen
,
W. E.
, and
Rona
,
A.
,
2012
, “
Encounters With Vortices in a Turbine Nozzle Passage
,”
Int. J. Rotating Mach.
,
2012
, pp.
1
10
.
45.
Carscallen
,
W. E.
, and
Gostelow
,
J. P.
,
1994
, “
Observations of Vortex Shedding in the Wake of Transonic Turbine Nozzles
,”
Proceeding of the Fifth International Symposium on Transport Phenomena and Dynamics of Rotating Machinery ISROMAC-5
,
Kaanapali, Maui, HI
,
May 8–11
, pp.
153
169
.
46.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
, 3rd ed.,
DCW Industries
,
La Cañada, CA
.
47.
Ackeret
,
J.
,
Feldmann
,
F.
, and
Rott
,
N.
,
1947
, “
Investigations of Compression Shocks and Boundary Layers in Gases Moving at High Speed
,” National Advisory Committee for Aeronautics (NACA). http://ntrs.nasa.gov/search.jsp?R=20030063988
48.
Gostelow
,
J. P.
,
Platzer
,
M. F.
, and
Carscallen
,
W. E.
,
2005
, “
On Vortex Formation in the Wake Flows of Transonic Turbine Blades and Oscillating Airfoils
,”
ASME. J. Turbomach.
,
128
(
3
), pp.
528
535
.
49.
Gostelow
,
J. P.
,
Rona
,
A.
,
De Saint Jean
,
M.
,
Garrett
,
S. J.
, and
McMullan
,
W. A.
,
2013
, “
Investigation of Streamwise and Transverse Instabilities on Swept Cylinders and Implications for Turbine Blading
,”
ASME J. Turbomach.
,
135
(
5
), p.
51018
.
50.
Bennett
,
W. P.
,
2005
, “
A Time Accurate Computational Analysis of Two-Dimensional Wakes
,” Ph.D. thesis, University of Leicester, UK.
51.
MacMartin
,
I. P.
, and
Norbury
,
J. F.
,
1974
, “
The Aerodynamics of a Turbine Cascade With Supersonic Discharge and Trailing Edge Blowing
,”
Proceedings of the ASME 1974 International Gas Turbine Conference and Products Show
,
Zurich, Switzerland
.
52.
Denton
,
J. D.
, and
Xu
,
L.
,
1990
, “
The Trailing Edge Loss of Transonic Turbine Blades
,”
ASME J. Turbomach.
,
112
(
2
), pp.
277
285
.
53.
Mee
,
D. J.
,
Baines
,
N. C.
,
Oldfield
,
M. L. G.
, and
Dickens
,
T. E.
,
1992
, “
An Examination of the Contributions to Loss on a Transonic Turbine Blade in Cascade
,”
ASME J. Turbomach.
,
114
(
1
), pp.
155
162
.
54.
Sieverding
,
C.
, and
Manna
,
M.
,
2020
, “
A Review on Turbine Trailing Edge Flow
,”
Int. J. Turbomach. Propuls. Power
,
5
(
2
), p.
10
.
55.
Carscallen
,
W. E.
,
Currie
,
T. C.
,
Hogg
,
S. I.
, and
Gostelow
,
J. P.
,
1999
, “
Measurement and Computation of Energy Separation in the Vortical Wake Flow of a Turbine Nozzle Cascade
,”
ASME J. Turbomach.
,
121
(
4
), pp.
703
708
.
56.
Gostelow
,
J. P.
,
Mahallati
,
A.
,
Andrews
,
S. A.
, and
Carscallen
,
W. E.
,
2009
, “
Measurement and Computation of Flowfield in Transonic Turbine Nozzle Blading With Blunt Trailing Edges
,”
Proceedings of the ASME Turbo Expo 2009: Power for Land, Sea, and Air. Volume 7: Turbomachinery, Parts A and B
,
Orlando, FL
,
June 8–12,
ASME
, pp.
979
991
.
57.
Eckert
,
E.
, and
Weise
,
W.
,
1942
, “
Messungen der Temperaturverteilung auf der Oberfläche Schnell Angeströmter Unbeheizter Körper
,”
Forsch. Ingenieurwes.
,
13
(
6
), pp.
246
254
.
58.
Kurosaka
,
M.
,
Gertz
,
J. B.
,
Graham
,
J. E.
,
Goodman
,
J. R.
,
Sundaram
,
P.
,
Riner
,
W. C.
,
Kuroda
,
H.
, and
Hankey
,
W. L.
,
1987
, “
Energy Separation in a Vortex Street
,”
J. Fluid Mech.
,
178
, pp.
1
29
.
59.
Carscallen
,
W. E.
, and
Oosthuizen
,
P. H.
,
1989
, “
The Effect of Secondary Flow on the Redistribution of the Total Temperature Field Downstream of a Stationary Turbine Cascade
,” Secondary Flows in Turbomachines; AGARD CP, 469.
60.
Ackerman
,
J. R.
,
Gostelow
,
J. P.
, and
Rona
,
A.
,
2009
, “
Measurements of Fluctuating Pressures on a Circular Cylinder in Subsonic Crossflow
,”
Am. Inst. Aeronauti. Astronaut. J.
,
47
(
9
), pp.
2121
2131
.
61.
Carscallen
,
W. E.
,
Gostelow
,
J. P.
, and
Mahallati
,
A.
,
2009
, “
Some Vortical Phenomena in Flows Over Transonic Turbine Nozzle Vanes Having Blunt Trailing Edges
,”
International Society of Air-breathing Engines Conference
,
Montreal, Canada
,
Sept. 7–11
, pp.
1
8
.
62.
Motallebi
,
F.
, and
Norbury
,
J. F.
,
1981
, “
The Effect of Base Bleed on Vortex Shedding and Base Pressure in Compressible Flow
,”
J. Fluid Mech.
,
110
, pp.
273
292
.
63.
Eckert
,
E. R. G.
,
1986
, “
Energy Separation in Fluid Streams
,”
Int. Commun. Heat Mass Transfer
,
13
(
2
), pp.
127
143
.
64.
Kestin
,
J.
, and
Wood
,
R. T.
,
1970
, “
On the Stability of Two-Dimensional Stagnation Flow
,”
J. Fluid Mech.
,
44
(
3
), pp.
461
479
.
65.
Smith
,
L. H.
, and
Yeh
,
H.
,
1963
, “
Sweep and Dihedral Effects in Axial-Flow Turbomachinery
,”
ASME J. Basic Eng.
,
85
(
3
), pp.
401
594
.
66.
Lewis
,
R. I.
, and
Hill
,
J. M.
,
1971
, “
The Influence of Sweep and Dihedral in Turbomachinery Blade Rows
,”
J. Mech. Eng. Sci.
,
13
(
4
), pp.
266
285
.
67.
Poll
,
D. I. A.
,
1985
, “
Some Observations of the Transition Process on the Windward Face of a Long Yawed Cylinder
,”
J. Fluid Mech.
,
150
, pp.
329
356
.
68.
Takagi
,
S.
,
Tokugawa
,
N.
, and
Itoh
,
N.
,
2006
, “Characteristics of Unsteady Disturbances due to Streamline Curvature Instability in a Three-Dimensional Boundary Layer,”
IUTAM Symposium on Laminar-Turbulent Transition. Fluid Mechanics and Its Applications
, Vol.
78
,
R
Govindarajan
, ed.,
Springer
,
Dordrecht, Netherlands
, pp.
369
374
.
69.
McMullan
,
A.
, and
Page
,
G.
,
2010
, “
Loss Coefficient Estimation in a Controlled Diffusion Cascade Using Large Eddy Simulation
,”
Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
,
Orlando, FL
,
Jan. 4–7
, pp.
1
17
.
70.
Luckring
,
J. M.
,
2019
, “
The Discovery and Prediction of Vortex Flow Aerodynamics
,”
Aeronaut. J.
,
123
(
1264
), pp.
729
804
.
71.
Tokugawa
,
N.
,
Takagi
,
S.
, and
Itoh
,
N.
,
2005
, “
Experiments on Streamline-Curvature Instability in Boundary Layers on a Yawed Cylinder
,”
AIAA J.
,
43
(
6
), pp.
1153
1159
.
You do not currently have access to this content.