Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The coupling effect between the complex vortex system and the rim purge flow in the endwall region of a high-lift low-pressure turbine (LPT) will significantly influence the evolution of secondary flow and the corresponding losses. This article focused on the unsteady interaction mechanism between the rim purge flow and the secondary flow inside the high-lift LPT under the periodic wake passing. The large eddy simulation (LES) method was used to reveal the influence mechanism of rim purge flow, rotor–stator cavity interaction, and unsteady wakes on the secondary flow. Detailed experimental measurement was carried out for the flow field of high-lift LPT under the influences of static purge flow. The results showed that the rim purge flow significantly increased the overturning and underturning downstream of the endwall region, resulting in aggravating secondary loss. The rotating-rim increased the difference of the circumferential velocity between the mainstream and the purge flow, aggravating the Kelvin–Helmholtz (K–H) instability, inducing the K–H vortex structure with stronger energy amplitude, and further increasing the endwall flow loss. The incoming wakes weakened the energy amplitude of the K–H vortex at the rim purge outlet, and thinned the thickness of the low-energy fluid at the blade leading edge. In addition, the interaction between the wakes and the secondary vortices further suppressed the development of the secondary flow. Nevertheless, the incoming wakes caused additional mixing losses and made a negative impact on the overall aerodynamic performance of the high-lift LPT.

References

1.
Kawai
,
T.
,
Shinoki
,
S.
, and
Adachi
,
T.
,
1990
, “
Visualization Study of Three-Dimensional Flows in a Turbine Cascade Endwall Region
,”
JSME Int. J.
,
33
(
2
), pp.
256
264
.
2.
Gregory-Smith
,
D. G.
, and
Cleak
,
J. G. E.
,
1992
, “
Secondary Flow Measurements in a Turbine Cascade With High Inlet Turbulence
,”
ASME J. Turbomach.
,
114
(
1
), pp.
173
183
.
3.
Hu
,
C.
,
Hao
,
L.
,
Geng
,
K.
, and
Rong
,
R.
,
2020
, “
Numerical Investigation and Loss Estimation of High-Pressure Turbine Cascade Flow With Contoured Endwall and Incoming Wakes
,”
Aerosp. Sci. Technol.
,
107
, p.
106335
.
4.
Turgut
,
Z. H.
, and
Camci
,
C.
,
2021
, “
A Simultaneous Use of a Leading-Edge Fillet and a Non-Axisymmetrically Contoured Endwall in a Turbine Stage
,”
Aerosp. Sci. Technol.
,
118
, p.
106985
.
5.
Donovan
,
M. H.
,
Rumpfkeil
,
M. P.
,
Marks
,
C. R.
,
Robison
,
Z.
, and
Gross
,
A.
,
2023
, “
Low Reynolds Number Effects on the Endwall Flow Field in a High-Lift Turbine Passage
,”
ASME J. Turbomach.
,
145
(
3
), p. 031006.
6.
Sterzinger
,
P. Z.
,
Zerobin
,
S.
,
Merli
,
F.
,
Wiesinger
,
L.
,
Peters
,
A.
,
Maini
,
G.
,
Dellacasagrande
,
M.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2020
, “
Impact of Varying High – and Low-Pressure Turbine Purge Flows on a Turbine Center Frame and Low-Pressure Turbine System
,”
ASME J. Turbomach.
,
142
(
10
), p. 101011.
7.
Popović
,
I.
,
Hodson
,
H. P.
,
Janke
,
E.
, and
Wolf
,
T.
,
2013
, “
The Effects of Unsteadiness and Compressibility on the Interaction Between Hub Leakage and Mainstream Flows in High-Pressure Turbines
,”
ASME J. Turbomach.
,
135
(
6
), p.
061015
.
8.
Monge-Concepción
,
I.
,
Barringer
,
M. D.
,
Berdanier
,
R. A.
,
Thole
,
K. A.
, and
Robak
,
C.
,
2023
, “
Use of Multiple Tracer Gases to Quantify Vane Trailing Edge Flow Into Turbine Rim Seals
,”
ASME J. Turbomach.
,
145
(
1
), p.
011006
.
9.
Johnson
,
B. V.
,
Jakoby
,
R.
,
Bohn
,
D. E.
, and
Cunat
,
D.
,
2009
, “
A Method for Estimating the Influence of Time-Dependent Vane and Blade Pressure Fields on Turbine Rim Seal Ingestion
,”
ASME J. Turbomach.
,
131
(
2
), p.
021005
.
10.
Regina
,
K.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2014
, “
Experimental Investigation of Purge Flow Effects on a High Pressure Turbine Stage
,”
ASME J. Turbomach.
,
137
(
4
), p.
041006
.
11.
Schrewe
,
S.
,
Werschnik
,
H.
, and
Schiffer
,
H.
,
2013
, “
Experimental Analysis of the Interaction Between Rim Seal and Main Annulus Flow in a Low Pressure Two Stage Axial Turbine
,”
ASME J. Turbomach.
,
135
(
5
), p.
051003
.
12.
Jenny
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Brettschneider
,
M.
,
Engel
,
K.
, and
Gier
,
J.
,
2013
, “
Unsteady Rotor Hub Passage Vortex Behavior in the Presence of Purge Flow in an Axial Low Pressure Turbine
,”
ASME J. Turbomach.
,
135
(
5
), p.
051022
.
13.
Barsi
,
D.
,
Lengani
,
D.
,
Simoni
,
D.
,
Venturino
,
G.
,
Bertini
,
F.
,
Giovannini
,
M.
, and
Rubechini
,
F.
,
2022
, “
Analysis of the Loss Production Mechanism Due to Cavity–Main Flow Interaction in a Low-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
144
(
9
), p.
091004
.
14.
Chilla
,
M.
,
Hodson
,
H.
, and
Newman
,
D.
,
2013
, “
Unsteady Interaction Between Annulus and Turbine Rim Seal Flows
,”
ASME J. Turbomach.
,
135
(
5
), p.
051024
.
15.
Wang
,
C.
,
Mathiyalagan
,
S. P.
,
Johnson
,
B. V.
,
Glahn
,
J. A.
, and
Cloud
,
D. F.
,
2013
, “
Rim Seal Ingestion in a Turbine Stage From 360 Degree Time-Dependent Numerical Simulations
,”
ASME J. Turbomach.
,
136
(
3
), p.
031007
.
16.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
,
2010
, “
Effects of Suction and Injection Purge-Flow on the Secondary Flow Structures of a High-Work Turbine
,”
ASME J. Turbomach.
,
132
(
2
), p.
021021
.
17.
Turgut
,
O. H.
, and
Camcı
,
C.
,
2012
, “
Computational Validation of the Flow Through a Turbine Stage and the Effects of Rim Seal Cavity Leakage on Secondary Flows
,”
ASME Turbo Expo
,
Copenhagen, Denmark
,
June 11–15
, pp.
6
11
.
18.
Mesny
,
A. W.
,
Glozier
,
M. A.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Li
,
Y. S.
,
Cleaver
,
D. J.
, and
Sangan
,
C. M.
,
2022
, “
Vortex Tracking of Purge-Mainstream Interactions in a Rotating Turbine Stage
,”
ASME J. Turbomach.
,
144
(
4
), p.
041011
.
19.
Pau
,
M.
, and
Paniagua
,
G.
,
2010
, “
Investigation of the Flow Field on a Transonic Turbine Nozzle Guide Vane With Rim Seal Cavity Flow Ejection
,”
ASME J. Fluids Eng.
,
132
(
11
), p.
111101
.
20.
Ong
,
J.
,
Miller
,
R. J.
, and
Uchida
,
S.
,
2012
, “
The Effect of Coolant Injection on the Endwall Flow of a High Pressure Turbine
,”
ASME J. Turbomach.
,
134
(
5
), p.
051003
.
21.
Kirik
,
I.
, and
Niehuis
,
R.
,
2010
, “
Influence of Unsteady Wakes on the Secondary Flows in the Linear T106 Turbine Cascade
,”
ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
,
Seoul, South Korea
,
June 13–17
, pp.
1
9
.
22.
Ciorciari
,
R.
,
Kirik
,
I.
, and
Niehuis
,
R.
,
2014
, “
Effects of Unsteady Wakes on the Secondary Flows in the Linear T106 Turbine Cascade
,”
ASME J. Turbomach.
,
136
(
9
), p.
091010
.
23.
Schubert
,
T.
,
Chemnitz
,
S.
, and
Niehuis
,
R.
,
2021
, “
The Effects of Inlet Boundary Layer Condition and Periodically Incoming Wakes on Secondary Flow in a Low Pressure Turbine Cascade
,”
ASME J. Turbomach.
,
143
(
4
), p.
041001
.
24.
Miki
,
K.
, and
Ameri
,
A.
,
2022
, “
Improved Prediction of Losses With Large Eddy Simulation in a Low-Pressure Turbine
,”
ASME J. Turbomach.
,
144
(
7
), p.
071002
.
25.
Su
,
X.
,
Bian
,
X.
,
Li
,
H.
, and
Yuan
,
X.
,
2021
, “
Unsteady Flows of a Highly Loaded Turbine Blade With Flat Endwall and Contoured Endwall
,”
Aerosp. Sci. Technol.
,
118
, p.
106989
.
26.
Qu
,
X.
,
Zhang
,
Y.
,
Lu
,
X.
, and
Zhu
,
J.
,
2020
, “
Unsteady Wakes–Secondary Flow Interactions in a High-Lift Low-Pressure Turbine Cascade
,”
Chin. J. Aeronaut.
,
33
(
3
), pp.
879
892
.
27.
Qu
,
X.
,
Zhang
,
Y.
,
Lu
,
X.
, and
Zhu
,
J.
,
2019
, “
Unsteady Effects of Periodic Wake Passing Frequency on Aerodynamic Performance of Ultra-High-Lift Low Pressure Turbine Cascades
,”
Phys. Fluids
,
31
(
9
), p.
094302
.
28.
Qu
,
X.
,
Zhang
,
Y.
,
Lu
,
X.
,
Han
,
G.
,
Li
,
Z.
, and
Zhu
,
J.
,
2019
, “
Effects of Periodic Wakes on the Endwall Secondary Flow in High-Lift Low-Pressure Turbine Cascades at Low Reynolds Numbers
,”
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
,
233
(
1
), pp.
354
368
.
29.
Robison
,
Z.
, and
Gross
,
A.
,
2022
, “
Comparative Numerical Investigation of Wake Effect on Low-Pressure Turbine Endwall Flow
,”
Aerosp. Sci. Technol.
,
131
, p.
107970
.
30.
Zhou
,
D. W.
,
Roy
,
R. P.
,
Wang
,
C.
, and
Glahn
,
J. A.
,
2010
, “
Main Gas Ingestion in a Turbine Stage for Three Rim Cavity Configurations
,”
ASME J. Turbomach.
,
133
(
3
), p.
031023
.
31.
Cernat
,
B. C.
,
Pinho
,
J.
,
Okada
,
M.
, and
Lavagnoli
,
S.
,
2023
, “
Experimental Investigation of a High-Speed Turbine With Rainbow Rotor and Rim Seal Purge Flow
,”
ASME J. Turbomach.
,
145
(
7
), p.
071014
.
32.
Berdanier
,
R. A.
,
2023
, “
Calculating Cooled Turbine Efficiency With Weighted Cooling Flow Distributions
,”
ASME J. Turbomach.
,
145
(
6
), p.
061007
.
33.
Pichler
,
R.
,
Zhao
,
Y.
,
Sandberg
,
R. D.
,
Michelassi
,
V.
,
Pacciani
,
R.
,
Marconcini
,
M.
, and
Arnone
,
A.
,
2018
, “
LES and RANS Analysis of the End-Wall Flow in a Linear LPT Cascade: Part I – Flow and Secondary Vorticity Fields Under Varying Inlet Condition
,”
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
Oslo, Norway
,
June 11–15
, pp.
1
10
.
34.
Marconcini
,
M.
,
Pacciani
,
R.
,
Arnone
,
A.
,
Michelassi
,
V.
,
Pichler
,
R.
,
Zhao
,
Y.
, and
Sandberg
,
R.
,
2018
, “
LES and RANS Analysis of the End-Wall Flow in a Linear LPT Cascade With Variable Inlet Conditions: Part II – Loss Generation
,”
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
Oslo, Norway
,
June 11–15
, pp.
1
9
.
35.
Pfeil
,
H.
, and
Herbst
,
R.
,
1979
,
Transition Procedure of Instationary Boundary Layers
,
American Society of Mechanical Engineers
,
San Diego, CA
.
36.
Michelassi
,
V.
,
Chen
,
L. W.
,
Pichler
,
R.
, and
Sandberg
,
R. D.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part II: Effect of Inflow Disturbances
,”
ASME J. Turbomach.
,
137
(
7
), p.
071005
.
37.
Schlichting
,
H.
, and
Gersten
,
K.
,
1961
,
Boundary Layer Theory
, Vol.
121
,
McGraw-Hill
,
New York
.
38.
Jenny
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Brettschneider
,
M.
, and
Gier
,
J.
,
2012
, “
A Low Pressure Turbine With Profiled Endwalls and Purge Flow Operating With a Pressure Side Bubble
,”
ASME J. Turbomach.
,
134
(
6
), p.
061038
.
39.
Regina
,
K.
,
Kalfas
,
A. I.
,
Abhari
,
R. S.
,
Lohaus
,
A.
,
Voelker
,
S.
, and
auf dem Kampe
,
T.
,
2014
, “
Aerodynamic Robustness of End Wall Contouring Against Rim Seal Purge Flow
,”
Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Düsseldorf, Germany
,
June 16–20
, pp.
1
13
.
40.
Arya
,
N.
, and
De
,
A.
,
2019
, “
Effect of Grid Sensitivity on the Performance of Wall Adapting SGS Models for LES of Swirling and Separating–Reattaching Flows
,”
Comput. Math. Appl.
,
78
(
6
), pp.
2035
2051
.
41.
Zhou
,
K.
, and
Zhou
,
C.
,
2021
, “
Aerodynamic Effects of an Incoming Vortex on Turbines With Different Tip Geometries
,”
ASME J. Turbomach.
,
143
(
3
), p.
081009
.
42.
Winhart
,
B.
,
Sinkwitz
,
M.
,
Schramm
,
A.
,
Engelmann
,
D.
,
di Mare
,
F.
, and
Mailach
,
R.
,
2019
, “
Experimental and Numerical Investigation of Secondary Flow Structures in an Annular Low Pressure Turbine Cascade Under Periodic Wake Impact—Part 2: Numerical Results
,”
ASME J. Turbomach.
,
141
(
2
), p.
021009
.
43.
Owen
,
J. M.
,
2010
, “
Prediction of Ingestion Through Turbine Rim Seals—Part I: Rotationally Induced Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031005
.
44.
Rabs
,
M.
,
Benra
,
F.
,
Dohmen
,
H. J.
, and
Schneider
,
O.
,
2009
, “
Investigation of Flow Instabilities Near the Rim Cavity of a 1.5 Stage Gas Turbine
,”
Proceedings of the ASME Turbo Expo 2009: Power for Land, Sea, and Air. Volume 3: Heat Transfer, Parts A and B
,
Orlando, FL
,
June 8–12
, pp.
1263
1272
.
45.
Lin
,
J. M.
, and
Pauley
,
L. L.
,
1996
, “
Low-Reynolds-Number Separation on an Airfoil
,”
AIAA J.
,
34
(
8
), pp.
1570
1577
.
46.
McAuliffe
,
B.
, and
Yaras
,
M.
,
2005
, “
Separation-Bubble-Transition Measurements on a Low-Re Airfoil Using Particle Image Velocimetry
,”
Turbo Expo: Power for Land, Sea, and Air
,
Reno, NV
,
June 6–9
, pp.
1029
1038
.
You do not currently have access to this content.