Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Adaptive stability control is experimentally implemented in a single-stage axial flow compressor subjected to rotating inlet distortion. Stall margin variations are examined as a function of the distorted area and rotational speed. A critical minimum value is identified when the distorted sector rotates at 0.5 times the rotor speed (P0.5RS), which remains independent of the size of the distorted area and induced frequency. Unsteady pressure measurements indicate that with the rotating inlet distortion at P0.5RS, the circumferentially propagating speed of the stall cell-induced downstream of the distorted region closely matches the rotational speed of the distorted sector, which causes the stall cell to undergo repeated cycles of generation, circumferential propagation, decay, and re-generation, ultimately leading to premature deep stall as the disturbance energy accumulates. In addition, tip air injection can suppress the repeated periodic disturbance energy accumulation, thereby delaying stall. Based on successful verification of the early stall warning under rotating inlet distortion through cross-correlation analysis, an adaptive stability control strategy is devised to sense the stall warning signal in real time and feed back the signal to control the injected valve once the alarm line is triggering. Even under the rotating distorted inflow at P0.5RS, the stall margin can be improved online by more than 10% while reducing the injected energy by 80% compared with that corresponding to steady injection. It provides insights for mitigating the adverse effects of rotating distortion on the compressor performance in multispool aero-engines.

References

1.
Day
,
I. J.
,
2016
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
011001
.
2.
Bowditch
,
D. N.
, and
Coltrin
,
R. E.
,
1983
, “
A Survey of Engine Inlet Distortion Capability
,” Report No. NASA TM-83421, National Aeronautics and Space Administration, Washington, DC.
3.
Schäffler
,
A.
, and
Miatt
,
D. C.
,
1985
, “
Experimental Evaluation of Heavy Fan-High-Pressure Compressor Interaction in a Three-Shaft Engine: Part 1—Experimental Setup and Results
,”
ASME J. Eng. Gas Turbines Power
,
107
(
4
), pp.
828
832
.
4.
Schäffler
,
A.
, and
Miatt
,
D. C.
,
1986
, “
Experimental Evaluation of Heavy Fan-High-Pressure Compressor Interaction in a Three-Shaft Engine: Part II—Analysis of Distortion and Fan Loading
,”
ASME J. Eng. Gas Turbines Power
,
108
(
1
), pp.
171
174
.
5.
Hynes
,
T. P.
, and
Greitzer
,
E. M.
,
1987
, “
A Method for Assessing Effects of Circumferential Flow Distortion on Compressor Stability
,”
ASME J. Turbomach.
,
109
(
3
), pp.
371
379
.
6.
Hah
,
C.
,
Rabe
,
D. C.
,
Sullivan
,
T. J.
, and
Wadia
,
A. R.
,
1998
, “
Effects of Inlet Distortion on the Flow Field in a Transonic Compressor Rotor
,”
ASME J. Turbomach.
,
120
(
2
), pp.
233
246
.
7.
Lesser
,
A.
, and
Niehuis
,
R.
,
2014
, “
Transonic Axial Compressors With Total Pressure Inlet Flow Field Distortions
,”
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Düsseldorf, Germany
,
June 16–20
.
8.
Lucas
,
J. R.
,
O’Brien
,
W. F.
, and
Ferrar
,
A. M.
,
2014
, “
Effect of BLI-Type Inlet Distortion on Turbofan Engine Performance
,”
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Düsseldorf, Germany
,
June 16–20
9.
Li
,
J.
,
Du
,
J.
,
Liu
,
Y.
,
Zhang
,
H.
, and
Nie
,
C.
,
2020
, “
Effect of Inlet Radial Distortion on Aerodynamic Stability in a Multi-Stage Axial Flow Compressor
,”
Aerosp. Sci. Technol.
,
105
, p.
105886
.
10.
Yan
,
W.
,
Hu
,
J.
,
Zhang
,
H.
,
Yin
,
C.
, and
Zhang
,
C.
,
2014
, “
Effects of Complicated Rotating Inlet Distortion on Compressor Aerodynamic Stability
,”
50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
,
Cleveland, OH
,
July 28–30
.
11.
Longley
,
J. P.
,
Shin
,
H. W.
,
Plumley
,
R. E.
,
Silkowski
,
P. D.
,
Day
,
I. J.
,
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Wisler
,
D. C.
,
1996
, “
Effects of Rotating Inlet Distortion on Multistage Compressor Stability
,”
ASME J. Turbomach.
,
118
(
2
), pp.
181
188
.
12.
Peters
,
T.
, and
Fottner
,
L.
,
2002
, “
Effects of Co- and Counter-Rotating Inlet Distortions on a 5-Stage HP-Compressor
,”
ASME Turbo Expo 2002: Power for Land, Sea, and Air
,
Amsterdam, The Netherlands
,
June 3–6
.
13.
Peters
,
T.
,
Burgener
,
T.
, and
Fottner
,
L.
,
2001
, “
Effects of Rotating Inlet Distortion on a 5-Stage HP-Compressor
,”
ASME Turbo Expo 2001: Power for Land, Sea, and Air
,
New Orleans, LA
,
June 4–7
.
14.
Zhang
,
J.
,
Lin
,
F.
,
Chen
,
J.
, and
Nie
,
C.
,
2007
, “
The Flow Mechanism of How Distorted Flows Deteriorate Stability of an Axial Compressor
,”
ASME Turbo Expo 2007: Power for Land, Sea, and Air
,
Montreal, Canada
,
May 14–17
.
15.
Zhang
,
J.
,
Lin
,
F.
,
Chen
,
J.
, and
Nie
,
C.
,
2007
, “
Effects of Rotating Inlet Distortion on Flow Stability of an Axial Compressor
,”
43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
,
Cincinnati, OH
,
July 8–11
.
16.
Salunkhe
,
P. B.
, and
Pradeep
,
A. M.
,
2010
, “
Stall Inception Mechanism in an Axial Flow Fan Under Clean and Distorted Inflows
,”
ASME J. Fluids Eng.
,
132
(
12
), p.
121102
.
17.
Zhang
,
H.
,
Li
,
Q.
,
Dong
,
F.
, and
Chu
,
W.
,
2021
, “
Mechanism of Affecting the Performance and Stability of an Axial Flow Compressor With Inlet Distortion
,”
J. Therm. Sci.
,
30
(
4
), pp.
1406
1420
.
18.
Dong
,
X.
,
Sun
,
D.
,
Li
,
F.
,
Gui
,
X.
, and
Sun
,
X.
,
2015
, “
Effects of Rotating Inlet Distortion on Compressor Stability With Stall Precursor-Suppressed Casing Treatment
,”
ASME J. Fluids Eng.
,
137
(
11
), p.
111101
.
19.
Beale
,
D. K.
,
Cramer
,
K. B.
, and
King
,
Dr. P. S.
,
2002
, “
Development of Improved Methods for Simulating Aircraft Inlet distortion in Turbine Engine Ground Tests
,”
22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference
,
St. Louis, MO
,
June 24–26
.
20.
Li
,
J.
,
Dong
,
X.
,
Sun
,
D.
,
Xu
,
R.
, and
Sun
,
X.
,
2021
, “
Response and Stabilization of a Two-Stage Axial Flow Compressor Restricted by Rotating Inlet Distortion
,”
Chin. J. Aeronaut.
,
34
(
9
), pp.
72
82
.
21.
Li
,
J.
,
Du
,
J.
,
Zhang
,
H.
, and
Nie
,
C.
,
2019
, “
Review of Tip Air Injection to Improve Stall Margin in Axial Compressors
,”
Prog. Aerosp. Sci.
,
106
, pp.
15
31
.
22.
Li
,
J.
,
Lin
,
F.
,
Tong
,
Z.
,
Nie
,
C.
, and
Chen
,
J.
,
2015
, “
The Dual Mechanisms and Implementations of Stability Enhancement With Discrete Tip Injection in Axial Flow Compressor
,”
ASME J. Turbomach.
,
137
(
3
), p.
031010
.
23.
Spakovszky
,
Z. S.
,
Weigl
,
H. J.
,
Paduano
,
J. D.
,
Van Schalkwyk
,
C. M.
,
Suder
,
K. L.
, and
Bright
,
M. M.
,
1999
, “
Rotating Stall Control in a High-Speed Stage With Inlet Distortion, Parts I-II
,”
ASME J. Turbomach.
,
121
(
3
), pp.
510
524
.
24.
Li
,
J.
,
Du
,
J.
,
Geng
,
S.
,
Li
,
F.
, and
Zhang
,
H.
,
2020
, “
Tip air Injection to Extend the Stall Margin of Multi-Stage Axial Flow Compressor Under Inlet Radial Distortion
,”
Aerosp. Sci. Technol.
,
96
, p.
105554
.
25.
Zhang
,
W.
, and
Vahdati
,
M.
,
2021
, “
Investigation of the Tip Injection for Stall Control in a Transonic Compressor With Inlet Distortion
,”
J. Glob. Power Propuls. Soc.
,
5
, pp.
28
38
.
26.
Li
,
J.
,
Liu
,
Y.
,
Liu
,
J.
,
Peng
,
F.
, and
Zhang
,
H.
,
2024
, “
Partial Tip Air Injection to Extend the Stall Margin in an Axial Flow Compressor With Circumferential Inlet Distortion
,”
Aerosp. Sci. Technol.
,
144
, p.
108810
.
27.
Paduano
,
J. D.
,
Valavani
,
L.
,
Epstein
,
A. H.
,
Greitzer
,
E. M.
, and
Guenette
,
G. R.
,
1994
, “
Modeling for Control of Rotating Stall
,”
Automatica
,
30
(
9
), pp.
1357
1373
.
28.
Li
,
J.
,
2017
, “
Self-Adaptive Stability-Enhancing Technology With Tip Air Injection in an Axial Flow Compressor
,”
ASME J. Turbomach.
,
139
(
1
), p.
011008
.
29.
Li
,
J.
,
Liu
,
Y.
,
Du
,
J.
, and
Zhang
,
H.
,
2020
, “
Automatic Stability Control Using Tip Air Injection in a Multi-Stage Axial Flow Compressor
,”
Aerosp. Sci. Technol.
,
98
, p.
105707
.
30.
Li
,
J.
,
Du
,
J.
,
Li
,
Z.
, and
Lin
,
F.
,
2018
, “
Stability Enhancement With Self-Recirculating Injection in Axial Flow Compressor
,”
ASME J. Turbomach.
,
140
(
7
), p.
071001
.
31.
Rannou
,
C.
,
Marty
,
J.
,
Tanguy
,
G.
, and
Dazin
,
A.
,
2023
, “
Effect of Tip Gap Size on the Performance of an Axial Compressor Stage With and Without Active Flow Control
,”
Int. J. Turbomach. Propuls. Power
,
8
(
3
), p.
30
.
32.
Wang
,
W.
,
Liu
,
B.
,
Lu
,
J.
,
Feng
,
J.
,
Chu
,
W.
, and
Wu
,
Y.
,
2022
, “
Comparative Study of Tip Injection in a Transonic and Subsonic Compressor
,”
ASME J. Turbomach.
,
144
(
6
), p.
061009
.
33.
El Mokkadem
,
O.
,
Chen
,
X.
,
Phan
,
C.
,
Delva
,
J.
,
Joseph
,
P.
,
Dazin
,
A.
, and
Romanò
,
F.
,
2023
, “
Small-Width Wall-Attached Coandǎ Jets for Flow Control
,”
Flow
,
2023
(
3
), p.
E17
.
34.
Zhang
,
W.
, and
Vahdati
,
M.
, “
A Parametric Study of the Effects of Inlet Distortion on fan Aerodynamic Stability
,”
ASME J. Turbomach.
,
141
(
1
), p.
011011
.
35.
Liu
,
Y.
,
Li
,
J.
,
Du
,
J.
,
Zhang
,
H.
, and
Nie
,
C.
,
2021
, “
Reliability Analysis for Stall Warning Methods in an Axial Flow Compressor
,”
Aerosp. Sci. Technol.
,
115
, p.
106816
.
You do not currently have access to this content.