Abstract

The study of component interactions in aeronautical engines is a key aspect to improve the aerodynamic, aeromechanical, and thermal performance and to reduce greenhouse gas and noise emissions. In this context, combustor systems (working with lean and premixed flames) generate pressure, velocity, and temperature fluctuations that interact with the turbine module producing combustor instability, performance degradation, and noise generation. A correct understanding of this interaction is thus required by the designers, especially with a view to introducing sustainable aviation fuel to achieve zero-emission aviation. This paper tackles this topic from a numerical and experimental point of view, focusing on off-design turbine conditions possibly encountered during an aero-engine mission. In detail, the effect of different stage loadings (obtained by keeping the stage pressure ratio and modifying the rotational speed) on engine-representative entropy waves evolving through the turbine stage is investigated. The combination of numerical and experimental results, that show a good agreement in terms of disturbance evolution within the stage, allows a deeper understanding of the flow field features that impact the stage aerodynamics and modify the secondary flow structures and the entropy wave transport, diffusion, and decay through the rotor. Moreover, the most loaded operating condition reveals the appearance of a rotating instability at the rotor tip that also interacts with the injected disturbance. Finally, the numerical results (coming from full annulus URANS computation with incoming disturbances) are further post-processed to extract indirect noise emissions at the different load conditions and to assess the additional loading on the rotor blade caused by the presence of the disturbance.

References

1.
Butler
,
T.
,
Sharma
,
O.
,
Joslyn
,
H.
, and
Dring
,
R.
,
1989
, “
Redistribution of an Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
J. Propul. Power
,
5
(
1
), pp.
64
71
.
2.
Beard
,
P. F.
,
Smith
,
A.
, and
Povey
,
T.
,
2012
, “
Impact of Severe Temperature Distortion on Turbine Efficiency
,”
ASME J. Turbomach.
,
135
(
1
), p.
011018
.
3.
Goh
,
C. S.
, and
Morgans
,
A. S.
,
2013
, “
The Influence of Entropy Waves on the Thermoacoustic Stability of a Model Combustor
,”
Combust. Sci. Technol.
,
185
(
2
), pp.
249
268
.
4.
Gundy-Burlet
,
K. L.
, and
Dorney
,
D. J.
,
1997
, “
Influence of 3D Hot Streaks on Turbine Heat Transfer
,”
Int. J. Turbo Jet Engines
,
14
(
3
), pp.
123
132
.
5.
Jacobi
,
S.
,
Mazzoni
,
C.
,
Chana
,
K.
, and
Rosic
,
B.
,
2017
, “
Investigation of Unsteady Flow Phenomena in the First Vane Caused by the Combustor Flow With Swirl
,”
ASME J. Turbomach.
,
139
(
4
), p.
041006
.
6.
Morgans
,
A. S.
, and
Durán
,
I.
,
2016
, “
Entropy Noise: A Review of Theory, Progress and Challenges
,”
Int. J. Spray Combust. Dyn.
,
8
(
4
), pp.
285
298
.
7.
Dowling
,
A. P.
, and
Mahmoudi
,
Y.
,
2015
, “
Combustion Noise
,”
Proc Combust Inst.
,
35
(
1
), pp.
65
100
.
8.
Pinelli
,
L.
,
Marconcini
,
M.
,
Pacciani
,
R.
,
Bake
,
F.
,
Knobloch
,
K.
,
Gaetani
,
P.
, and
Persico
,
G.
,
2022
, “
Effect of Clocking on Entropy Noise Generation Within an Aeronautical High Pressure Turbine Stage
,”
J. Sound Vib.
,
529
(
1
), p.
116900
.
9.
Khanal
,
B.
,
He
,
L.
,
Northall
,
J.
, and
Adami
,
P.
,
2013
, “
Analysis of Radial Migration of Hot-Streak in Swirling Flow Through High-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
135
(
4
), p.
041005
.
10.
Bacci
,
T.
,
Becchi
,
R.
,
Picchi
,
A.
, and
Facchini
,
B.
,
2019
, “
Adiabatic Effectiveness on High-Pressure Turbine Nozzle Guide Vanes Under Realistic Swirling Conditions
,”
ASME J. Turbomach.
,
141
(
1
), p.
011009
.
11.
Rahim
,
A.
, and
He
,
L.
,
2015
, “
Rotor Blade Heat Transfer of High Pressure Turbine Stage Under Inlet Hot-Streak and Swirl
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6
), p.
062601
.
12.
Adams
,
M. G.
,
Povey
,
T.
,
Hall
,
B. F.
,
Cardwell
,
D. N.
,
Chana
,
K. S.
, and
Beard
,
P. F.
,
2020
, “
Commissioning of a Combined Hot-Streak and Swirl Profile Generator in a Transonic Turbine Test Facility
,”
ASME J. Eng. Gas Turbines Power
,
142
(
3
), p.
031008
.
13.
Adams
,
M. G.
,
Beard
,
P. F.
,
Stokes
,
M. R.
,
Wallin
,
F.
,
Chana
,
K. S.
, and
Povey
,
T.
,
2021
, “
Effect of a Combined Hot-Streak and Swirl Profile on Cooled 1.5-Stage Turbine Aerodynamics: An Experimental and Computational Study
,”
ASME J. Turbomach.
,
143
(
2
), p.
021011
.
14.
Persico
,
G.
,
Gaetani
,
P.
, and
Spinelli
,
A.
,
2017
, “
Assessment of Synthetic Entropy Waves for Indirect Combustion Noise Experiments in Gas Turbines
,”
Exp. Therm. Fluid Sci.
,
88
(
1
), pp.
376
388
.
15.
Notaristefano
,
A.
, and
Gaetani
,
P.
,
2020
, “
Design and Commissioning of a Combustor Simulator Combining Swirl and Entropy Wave Generation
,”
Int. J. Turbomach. Propul. Power
,
5
(
4
), p.
27
.
16.
Gaetani
,
P.
, and
Persico
,
G.
,
2019
, “
Transport of Entropy Waves Within a HP Turbine Stage
,”
ASME J. Turbomach.
,
141
(
3
), p.
031006
.
17.
Pinelli
,
L.
,
Marconcini
,
M.
,
Pacciani
,
R.
,
Gaetani
,
P.
, and
Persico
,
G.
,
2021
, “
Computational and Experimental Study of the Unsteady Convection of Entropy Waves Within a High-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
143
(
9
), p.
091011
.
18.
Notaristefano
,
A.
, and
Gaetani
,
P.
,
2023
, “
The Role of Turbine Operating Conditions on Combustor–Turbine Interaction–Part I: Change in Expansion Ratio
,”
ASME J. Turbomach.
,
145
(
5
), p.
051001
.
19.
Notaristefano
,
A.
, and
Gaetani
,
P.
,
2023
, “
The Role of Turbine Operating Conditions on Combustor–Turbine Interaction–Part II: Loading Effects
,”
ASME J. Turbomach.
,
145
(
5
), p.
051002
.
20.
Gaetani
,
P.
,
Persico
,
G.
,
Pinelli
,
L.
,
Marconcini
,
M.
, and
Pacciani
,
R.
,
2020
, “
Computational and Experimental Study of Hot Streak Transport Within the First Stage of a Gas Turbine
,”
ASME J. Turbomach.
,
142
(
8
), p.
081002
.
21.
Notaristefano
,
A.
, and
Gaetani
,
P.
,
2022
, “
Impact of Swirling Entropy Waves on a High Pressure Turbine
,”
ASME J. Turbomach.
,
144
(
3
), p.
031010
.
22.
Pinelli
,
L.
,
Marconcini
,
M.
,
Pacciani
,
R.
,
Notaristefano
,
A.
, and
Gaetani
,
P.
,
2023
, “
The Effects of Swirling Flows in Entropy Wave Convection Through High-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
145
(
3
), p.
031004
.
23.
Pinelli
,
L.
,
Poli
,
F.
,
Arnone
,
A.
,
Guérin
,
S.
,
Holewa
,
A.
,
Fernández Aparicio
,
J. R.
, and
Puente
,
R.
, et al.,
2015
, “
On the Numerical Evaluation of Tone Noise Emissions Generated by a Turbine Stage: An In-Depth Comparison Among Different Computational Methods
,” Volume 2B: Turbomachinery of Turbo Expo: Power for Land, Sea, and Air, p.
V02BT41A002
.
24.
Gaetani
,
P.
,
Persico
,
G.
,
Dossena
,
V.
, and
Osnaghi
,
C.
,
2007
, “
Investigation of the Flow Field in a High-Pressure Turbine Stage for Two Stator-Rotor Axial Gaps-Part I: Three-Dimensional Time-Averaged Flow Field
,”
ASME J. Turbomach.
,
129
(
3
), pp.
572
579
.
25.
Pacciani
,
R.
,
Marconcini
,
M.
, and
Arnone
,
A.
,
2019
, “
Comparison of the AUSM+-Up and Other Advection Schemes for Turbomachinery Applications
,”
Shock Waves
,
29
(
1
), pp.
705
716
.
26.
Pacciani
,
R.
,
Marconcini
,
M.
,
Bertini
,
F.
,
Rosa Taddei
,
S.
,
Spano
,
E.
,
Zhao
,
Y.
,
Akolekar
,
H. D.
,
Sandberg
,
R. D.
, and
Arnone
,
A.
,
2021
, “
Assessment of Machine-Learned Turbulence Models Trained for Improved Wake-Mixing in Low-Pressure Turbine Flows
,”
Energies
,
14
(
24
), p.
8327
.
27.
Arnone
,
A.
,
1994
, “
Viscous Analysis of Three-Dimensional Rotor Flow Using a Multigrid Method
,”
ASME J. Turbomach.
,
116
(
1
), pp.
435
445
.
28.
Pinelli
,
L.
,
Poli
,
F.
,
Di Grazia
,
E.
,
Arnone
,
A.
, and
Torzo
,
D.
,
2013
, “
A Comprehensive Numerical Study of Tone Noise Emissions in a Multistage Cold Flow Rig
,”
19th AIAA/CEAS Aeroacoustic Conference
,
Berlin, Germany
,
May 27–29
, AIAA Paper 2013-2104.
29.
Pinelli
,
L.
,
Lori
,
F.
,
Marconcini
,
M.
,
Pacciani
,
R.
, and
Arnone
,
A.
,
2021
, “
Validation of a Modal Work Approach for Forced Response Analysis of Bladed Disks
,”
Appl. Sci.
,
11
(
12
), p.
5437
.
30.
Pinelli
,
L.
,
Amedei
,
A.
,
Meli
,
E.
,
Vanti
,
F.
,
Romani
,
B.
,
Benvenuti
,
G.
,
Fabbrini
,
M.
,
Morganti
,
N.
,
Rindi
,
A.
, and
Arnone
,
A.
,
2022
, “
Innovative Design, Structural Optimization, and Additive Manufacturing of New-Generation Turbine Blades
,”
ASME J. Turbomach.
,
144
(
1
), p.
011006
.
31.
Poli
,
F.
,
Marconcini
,
M.
,
Pacciani
,
R.
,
Magarielli
,
D.
,
Spano
,
E.
, and
Arnone
,
A.
,
2022
, “
Exploiting GPU-Based HPC Architectures to Accelerate an Unsteady CFD Solver for Turbomachinery Applications
,” Volume 10C: Turbomachinery – Design Methods and CFD Modeling for Turbomachinery; Ducts, Noise, and Component Interactions of Turbo Expo: Power for Land, Sea, and Air, p.
V10CT32A035
.
32.
Wang
,
H.
,
Wu
,
Y.
,
Wang
,
Y.
, and
Deng
,
S.
,
2020
, “
Evolution of the Flow Instabilities in an Axial Compressor Rotor With Large Tip Clearance: An Experimental and URANS Study
,”
Aerosp Sci. Technol.
,
96
(
1
), p.
105557
.
33.
Prasad
,
D.
, and
Hendricks
,
G. J.
,
2000
, “
A Numerical Study of Secondary Flow in Axial Turbines With Application to Radial Transport of Hot Streaks
,”
ASME J. Turbomach.
,
122
(
4
), pp.
667
673
.
You do not currently have access to this content.