Abstract

Additive manufacturing (AM) has transformed the ability to accelerate gas turbine component research and development at a fraction of the cost and time associated with conventional manufacturing. However, whereas prior works have assessed manufacturing variability in cast turbine airfoils, limited data are available to understand the impact of as-built deviations in AM turbine parts. As metal additive airfoils are becoming more prevalent in research turbine architectures, it is increasingly important to understand the effects of potential hardware deviations specific to additively-manufactured parts. With this goal in mind, the current study utilizes a digital engineering approach to evaluate the aerodynamic impact of surface deviations on a high-pressure turbine vane design created for research purposes. Reynolds-averaged Navier–Stokes-based computational fluid dynamics studies derived from structured light scans of as-built turbine vanes are used to quantify performance relative to design-intent geometries. Further computational analyses compare results from individual serialized parts with an average vane doublet geometry serving as a surrogate for the entire wheel. Particular emphasis in the study focuses on external surface defects caused by internal cooling features that are inherent through additive manufacturing and how these features can impact the vane performance. Ultimately, this study identifies specific regions of the vane that are subject to increased sensitivity, which benefits future designers intending to use AM as a tool for turbine research and development.

References

1.
Angel
,
N. M.
, and
Basak
,
A.
,
2020
, “
On the Fabrication of Metallic Single Crystal Turbine Blades With a Commentary on Repair Via Additive Manufacturing
,”
J. Manuf. Mater. Process.
,
4
(
4
), p.
101
.
2.
Cecconi
,
M.
, and
Giovannetti
,
I.
,
2023
, “
Development of Additive Manufacturing Gas Turbine Hot Gas Path Vanes at Baker Hughes
,”
Proceedings of ASME Turbo Expo
,
Boston, MA
,
June 26–30
, ASME Paper No. GT2023-103043.
3.
Smith
,
T. M.
,
Kantzos
,
C. A.
,
Zarkevich
,
N. A.
,
Harder
,
B. J.
,
Heczko
,
M.
,
Gradl
,
P. R.
,
Thompson
,
A. C.
,
Mills
,
M. J.
,
Gabb
,
T. P.
, and
Lawson
,
J. W.
,
2023
, “
A 3D Printable Alloy Designed for Extreme Environments
,”
Nature
,
617
(
7961
), pp.
513
518
.
4.
Thole
,
K. A.
,
Lynch
,
S. P.
, and
Wildgoose
,
A. J.
,
2021
, “
Review of Advances in Convective Heat Transfer Developed Through Additive Manufacturing
,”
Adv. Heat Transfer
,
53
, pp.
249
325
.
5.
Wildgoose
,
A. J.
,
Thole
,
K. A.
,
Subramanian
,
R.
,
Kersting
,
L.
, and
Kulkarni
,
A.
,
2023
, “
Impacts of the Additive Manufacturing Process on the Roughness of Engine Scale Vanes and Cooling Channels
,”
ASME J. Turbomach.
,
145
(
4
), p.
041013
.
6.
Dong
,
Y. W.
,
Li
,
X. L.
,
Zhao
,
Q.
,
Yang
,
J.
, and
Dao
,
M.
,
2017
, “
Modeling of Shrinkage During Investment Casting of Thin-Walled Hollow Turbine Blades
,”
J. Mater. Process. Technol.
,
244
, pp.
190
203
.
7.
Bammert
,
K.
, and
Sandstede
,
H.
,
1976
, “
Influences of Manufacturing Tolerances and Surface Roughness of Blades on the Performance of Turbines
,”
ASME J. Eng. Gas Turbines Power
,
98
(
1
), pp.
29
36
.
8.
Roelke
,
R. J.
, and
Haas
,
J. E.
,
1983
, “
The Effect of Rotor Blade Thickness and Surface Finish on the Performance of a Small Axial Flow Turbine
,”
ASME J. Eng. Gas Turbine Power
,
105
(
4
), pp.
377
382
.
9.
Bunker
,
R. S.
,
2009
, “
The Effects of Manufacturing Tolerances on Gas Turbine Cooling
,”
ASME J. Turbomach.
,
131
(
4
), p.
041008
.
10.
Wang
,
X.
,
Du
,
P.
,
Yao
,
L.
,
Zou
,
Z.
, and
Zeng
,
F.
,
2023
, “
Uncertainty Analysis of Measured Geometric Variations in Turbine Blades and Impact on Aerodynamic Performance
,”
Chin. J. Aeronaut.
,
36
(
6
), pp.
140
160
.
11.
Nicolle
,
J.
,
Labbé
,
P.
,
Gauthier
,
G.
, and
Lussier
,
M.
,
2010
, “
Impact of Blade Geometry Differences for the CFD Performance Analysis of Existing Turbines
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
12
, p.
012028
.
12.
Lee
,
W. Y.
,
Dawes
,
W. N.
,
Coull
,
J. D.
, and
Goenaga
,
F.
,
2018
, “
The Impact of Manufacturing Variability on High Pressure Turbine Profile Loss
,”
Proceedings of AIAA Aerospace Sciences Meeting
,
Kissimmee, FL
,
Jan. 8–12
, AIAA Paper No. 2018–2121.
13.
Liu
,
J. S.
,
Zhu
,
D. X.
,
Lew
,
B.
, and
Rodriguez
,
A. D.
,
2018
, “
Aerodynamic and Mechanical Analyses on Manufacturing Variations of a Turbine Blade Row
,”
Proceedings of ASME Turbo Expo
,
Lillestrøm, Norway
,
June 11–15
, Paper No. GT2018-75536.
14.
Clark
,
J. P.
,
Beck
,
J. A.
,
Kaszynski
,
A. A.
,
Still
,
A.
, and
Ni
,
R. H.
,
2018
, “
The Effect of Manufacturing Variations on Unsteady Interaction in a Transonic Turbine
,”
ASME J. Turbomach.
,
140
(
6
), p.
061007
.
15.
Dawes
,
B.
,
Meah
,
N.
,
Kudryavtsev
,
A.
,
Evans
,
R.
,
Hunt
,
M.
, and
Tiller
,
P.
,
2019
, “
Digital Geometry to Support a Gas Turbine Digital Twin
,”
Proceedings of AIAA SciTech Forum
,
San Diego, CA
,
Jan. 7–11
, AIAA Paper No. 2019-1715.
16.
Lee
,
W. Y.
,
Dawes
,
W. N.
, and
Coull
,
J. D.
,
2020
, “
Physics-Based Part Orientation and Sentencing: A Solution to Manufacturing Variability
,”
ASME J. Turbomach.
,
142
(
10
), p.
101001
.
17.
Shahpar
,
S.
,
2020
, “
Building Digital Twins to Simulate Manufacturing Variation
,”
Proceedings of ASME Turbo Expo
,
Virtual, Online
,
Sept. 21–25
, ASME Paper No. GT2020-15263.
18.
Viridis
,
I.
,
2022
, “
Uncertainty Quantification and Optimization of Aeronautical Components
,”
Ph.D. dissertation
,
Industrial Engineering, Università degli Studi di Cagliari
,
Cagliari, Italy
.
19.
Carta
,
M.
,
Ghisu
,
T.
, and
Shahpar
,
S.
,
2022
, “
High-Fidelity Computational Fluid Dynamics Analysis of In-Serviced Shrouded High-Pressure Turbine Rotor Blades
,”
ASME J. Turbomach.
,
144
(
12
), p.
121001
.
20.
Milli
,
A.
, and
Shahpar
,
S.
,
2012
, “
Padram: Parametric Design and Rapid Meshing System for Complex Turbomachinery Configurations
,”
Proceedings of ASME Turbo Expo
,
Copenhagen, Denmark
,
June 11–15
, ASME Paper No. GT2012-69030.
21.
Duffner
,
J.
,
2008
, “
The Effects of Manufacturing Variability on Turbine Vane Performance
,”
Master’s thesis
,
Aerospace Engineering, Massachusetts Institute of Technology
,
Cambridge, MA
.
22.
Hogner
,
L.
,
Nasuf
,
A.
,
Voigt
,
P.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Meyer
,
M.
,
Berridge
,
C.
, and
Goenaga
,
F.
,
2016
, “
Analysis of High Pressure Turbine Nozzle Guide Vanes Considering Geometric Variations
,”
Proceedings of ASME Turbo Expo
,
Seoul, South Korea
,
June 13–17
, ASME Paper No. GT2016-57502.
23.
Burdett
,
D.
,
Goenaga
,
F.
, and
Povey
,
T.
,
2021
, “
Understanding Capacity Sensitivity of Cooled Transonic Nozzle Guide Vanes: A Parametric Experimental and Computational Study of the Impact of Trailing Edge Geometry
,”
ASME J. Turbomach.
,
143
(
5
), p.
051001
.
24.
Wimmer
,
T.
,
Ruehmer
,
T.
,
Mick
,
Y.
,
Wang
,
L.
, and
Weigand
,
B.
,
2019
, “
Experimental and Numerical Investigation on an Additively Manufactured Gas Turbine Ring Segment With an In-Wall Cooling Scheme
,”
Proceedings of ASME Turbo Expo
,
Phoenix, AZ
,
June 17–21
, ASME Paper No. GT2019-90227.
25.
Kirsch
,
K. L.
, and
Thole
,
K. A.
,
2017
, “
Heat Transfer and Pressure Loss Measurements in Additively Manufactured Wavy Microchannels
,”
ASME J. Turbomach.
,
139
(
1
), p.
011007
.
26.
Veley
,
E. M.
,
Thole
,
K. A.
,
Furgeson
,
M. T.
, and
Bogard
,
D. G.
,
2023
, “
Printability and Overall Cooling Performance of Additively Manufactured Holes With Inlet and Exit Rounding
,”
ASME J. Turbomach.
,
145
(
3
), p.
031017
.
27.
Corbett
,
T. M.
,
Thole
,
K. A.
, and
Bollapragada
,
S.
,
2023
, “
Amplitude and Wavelength Effects for Wavy Channels
,”
ASME J. Turbomach.
,
145
(
3
), p.
031011
.
28.
Hossain
,
M. A.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
,
2021
, “
Experimental Investigation of Innovative Cooling Schemes on an Additively Manufactured Engine Scale Turbine Nozzle Guide Vane
,”
ASME J. Turbomach.
,
143
(
5
), p.
051004
.
29.
Krewinkel
,
R.
,
Such
,
A.
,
de la Torre
,
A. O.
,
Wiedermann
,
A.
,
Castillo
,
D.
,
Rodriguez
,
S. A.
,
Schleifenbaum
,
J. H.
, and
Blaswich
,
M.
,
2020
, “
Design and Characterization of Additively Manufactured NGVs Operated in a Small Industrial Gas Turbine
,”
Int. J. Gas Turbine, Propul. Power Syst.
,
11
(
4
), pp.
36
44
.
30.
Torkaman
,
A.
,
Vogel
,
G.
, and
Houck
,
L.
,
2021
, “
Design, Development and Validation of Additively Manufactured First Stage Turbine Vane for F Class Industrial Gas Turbine
,”
Proceedings of ASME Turbo Expo
,
Virtual, Online
,
June 7–11
, ASME Paper No. GT2021-60201.
31.
Fedorov
,
I.
,
Barhanko
,
D.
,
Hallberg
,
M.
, and
Lindbaeck
,
M.
,
2021
, “
Hot Turbine Guide Vane Performance Improvement With Metal Additive Manufacturing at Siemens Energy
,”
Proceedings of ASME Turbo Expo
,
Virtual, Online
,
June 7–11
, ASME Paper No. GT2021-59523.
32.
Naryzhnyy
,
O.
,
Lindbaeck
,
M.
,
Laletin
,
P.
, and
Rotar
,
A.
,
2022
, “
Additively Manufactured Guide Vane With Integral Measurement System for Validation on Engine
,”
Proceedings of ASME Turbo Expo
,
Rotterdam, The Netherlands
,
June 13–17
, ASME Paper No. GT2022-82132.
33.
Lindbäck
,
M.
,
Frankolin
,
K.
,
Tuneskog
,
E.
, and
Karlsson
,
B.
,
2023
, “
Development and Validation Under Engine Operation Environment of Additively Manufactured Hot Turbine Parts
,”
Proceedings of ASME Turbo Expo
,
Boston, MA
,
June 26–30
, ASME Paper No. GT2023-103771.
34.
Thole
,
K. A.
,
Barringer
,
M. D.
,
Berdanier
,
R. A.
,
Fishbone
,
S.
,
Wagner
,
J. H.
,
Dennis
,
R.
,
Black
,
J.
, et al
,
2021
, “
Defining a Testbed for the U.S. Turbine Industry: The National Experimental Turbine (NExT)
,”
Proceedings of AIAA Propulsion and Energy Forum
,
Virtual, Online
,
Aug. 9–11
, AIAA Paper No. 2021-3489.
35.
Barringer
,
M.
,
Coward
,
A.
,
Clark
,
K.
,
Thole
,
K. A.
,
Schmitz
,
J.
,
Wagner
,
J.
,
Alvin
,
M. A.
,
Burke
,
P.
, and
Dennis
,
R.
,
2014
, “
The Design of a Steady Aero Thermal Research Turbine (START) for Studying Secondary Flow Leakages and Airfoil Heat Transfer
,”
Proceedings of ASME Turbo Expo
,
Düsseldorf, Germany
,
June 16–20
, ASME Paper No. GT2014-25570.
36.
Berdanier
,
R. A.
,
Nunn
,
M. R.
,
Brumberg
,
J. T.
,
Barringer
,
M. D.
,
Fishbone
,
S.
, and
Thole
,
K. A.
,
2024
, “
Evaluating Thin-Film Thermocouple Performance on Additively Manufactured Turbine Airfoils
,”
Proceedings of ASME Turbo Expo
,
London, England, UK
,
June 24–28
, ASME Paper No. GT2024-124155.
37.
Gailey
,
N.
,
Barringer
,
M.
,
Berdanier
,
R. A.
, and
Thole
,
K. A.
,
2024
, “
Integration of Cooling Holes Into a Turbine Vane Made Using Additive Manufacturing
,”
Proceedings of ASME Turbo Expo
,
London, UK
,
June 24–28
, ASME Paper No. GT2024-124085.
38.
Wang
,
R.
,
Law
,
A. C.
,
Garcia
,
D.
,
Yang
,
S.
, and
Kong
,
Z.
,
2021
, “
Development of Structured Light 3D-Scanner With High Spatial Resolution and Its Applications for Additive Manufacturing Quality Assurance
,”
Int. J. Adv. Manuf. Technol.
,
117
(
3–4
), pp.
845
862
.
39.
Mendricky
,
R.
,
2016
, “
Determination of Measurement Accuracy of Optical 3D Scanners
,”
MM Sci. J.
,
2016
(
Dec.
), pp.
1565
1572
.
40.
Mendricky
,
R.
, and
Sobotka
,
J.
,
2020
, “
Accuracy Comparison of the Optical 3D Scanner and CT Scanner
,”
Manuf. Technol.
,
20
(
6
), pp.
791
801
.
41.
Tien
,
L.
,
2024
, “
CFD Predictions of the National Experimental Turbine Stage
,” Ph.D. dissertation, Penn State University, University Park, PA.
42.
Rozman
,
M.
,
Berdanier
,
R. A.
,
Barringer
,
M. D.
, and
Thole
,
K. A.
,
2024
, “
Strategies for High-Accuracy Measurements of Stage Efficiency for a Cooled Turbine
,”
ASME J. Turbomach.
,
146
(
10
), p.
101009
.
43.
Sutherland
,
W.
,
1893
, “
LII. The Viscosity of Gases and Molecular Force
,”
Lond. Edinb. Dublin Philos. Mag. J. Sci.
,
36
(
223
), pp.
507
531
.
44.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
45.
Voigt
,
P.
,
Högner
,
L.
,
Fiedler
,
B.
,
Voigt
,
M.
,
Mailach
,
R.
,
Meyer
,
M.
, and
Nasuf
,
A.
,
2019
, “
Comprehensive Geometric Description of Manufacturing Scatter of High-Pressure Turbine Nozzle Guide Vanes for Probabilistic CFD Analysis
,”
ASME J. Turbomach.
,
141
(
8
), p.
081002
.
46.
Mireles
,
O. R.
,
Tilson
,
W.
,
Rodriguez
,
O.
,
Jones
,
J.
, and
Burkle
,
D.
,
2020
, “
Characterizing Effects of Potential Build Induced Artifacts in L-Pbf Components
,”
Proceedings of AIAA Propulsion and Energy Forum
,
Virtual, Online
,
Aug. 24–28
, AIAA Paper No. 2020-3507.
47.
Park
and
Gredl
,
2023
, “
Separation Anxiety: Lessons Learned at NASA From a Developmental Rocket Engine Failure
,”
Met. Addit. Manuf.
,
9
(
1
), pp.
125
135
.
48.
Wang
,
X.
, and
Zou
,
Z.
,
2021
, “
Effect of Leading-Edge/Trailing-Edge Geometry on Uncertainty Aerodynamic Performance of a 2D Low-Pressure Turbine Blade
,”
Proceedings of Global Power and Propulsion Forum
,
Zürich, Switzerland
,
Jan. 15–16
, GPPS Paper No. GPPS-TC-2021-0018.
You do not currently have access to this content.