Abstract

This research focuses on improving the modeling of heat transfer effects in pulsating exhaust flows. We address the challenges of understanding oscillating flow by employing the Metropolis–Hastings Markov Chain Monte Carlo sampling method for parameter estimation, accounting for measurement uncertainties. The knowledge can be applied to waste heat from reciprocating devices, pulsating turbocharger performance, and flow fields with significant cyclic variations. We demonstrate the feasibility of characterizing heat transfer capacity in pulsating flows using Bayesian inference and polynomial regression for experimental data correlation. This methodology is furthermore applied to identify heat transfer patterns in cold gas flow through a heated pipe across a range of mass flowrates and pulsating frequencies. To achieve this, the thermal performance variations across the length of the pipe through temperature and pressure changes are quantified. The model developed exhibits robust performance and high data efficiency (R2[0.83,0.89]) and notable extrapolation capacity in predicting mean heat transfer behavior based on boundary measurements. The results address the lack of experimental insights into pulsating flows encountered in heavy-duty transport applications and can be extended for heat recovery in systems such as exhaust manifolds and organic Rankine cycle gas turbines.

References

1.
Condie
,
K. G.
, and
McEligot
,
D. M.
,
1995
, “
Convective Heat Transfer for Pulsating Flow in the Takedown Pipe of a V-6 Engine
,”
SAE Trans.
,
104
, pp.
1091
1099
.
2.
Ma
,
P. C.
,
Greene
,
M.
,
Sick
,
V.
, and
Ihme
,
M.
,
2017
, “
Non-Equilibrium Wall-Modeling for Internal Combustion Engine Simulations With Wall Heat Transfer
,”
Int. J. Engine Res.
,
18
(
1–2
), pp.
15
25
.
3.
Davletshin
,
I.
,
Mikheev
,
A.
,
Mikheev
,
N.
, and
Shakirov
,
R.
,
2020
, “
Data on Distribution of Heat Transfer Coefficient and Profiles of Velocity and Turbulent Characteristics Behind a Rib in Pulsating Flows
,”
Data in Brief
,
33
, p.
106485
.
4.
Dec
,
J. E.
,
Keller
,
J. O.
, and
Arpaci
,
V. S.
,
1992
, “
Heat Transfer Enhancement in the Oscillating Turbulent Flow of a Pulse Combustor Tail Pipe
,”
Int. J. Heat Mass Transfer
,
35
(
9
), pp.
2311
2325
.
5.
Ishino
,
Y.
,
Suzuki
,
M.
,
Abe
,
T.
,
Ohiwa
,
N.
, and
Yamaguchi
,
S.
,
1996
, “
Flow and Heat Transfer Characteristics in Pulsating Pipe Flows (Effects of Pulsation on Internal Heat Transfer in a Circular Pipe Flow)
,”
Heat Transf. - Jpn Res.
,
25
(
5
), pp.
323
341
.
6.
Kato
,
Y.
,
Guanming
,
G.
,
Kamigaki
,
M.
,
Fujimoto
,
K.
,
Kawaguchi
,
M.
,
Nishida
,
K.
,
Koutoku
,
M.
,
Hongou
,
H.
,
Yanagida
,
H.
, and
Ogata
,
Y.
,
2023
, “
An Examination of Heat Transfer Dynamics in Pulsating Air Flow Within Pipes: Implications for Automotive Exhaust Engines
,”
Int. J. Heat Technol.
,
41
, pp.
815
826
.
7.
Sorin
,
A.
,
Bouloc
,
F.
,
Bourouga
,
B.
, and
Anthoine
,
P.
,
2008
, “
Experimental Study of Periodic Heat Transfer Coefficient in the Entrance Zone of An Exhaust Pipe
,”
Int. J. Therm. Sci.
,
47
, pp.
1665
1675
.
8.
Ye
,
Q.
,
Zhang
,
Y.
, and
Wei
,
J.
,
2021
, “
A Comprehensive Review of Pulsating Flow on Heat Transfer Enhancement
,”
Appl. Therm. Eng.
,
196
, p.
117275
.
9.
Elshafei
,
E.
,
Safwat
,
M.
,
Mansour
,
H.
, and
Fadl
,
M.
,
2008
, “
Experimental Study of Heat Transfer in Pulsating Turbulent Flow in a Pipe
,”
Int. J. Heat Fluid Flow
,
29
, pp.
1029
1038
.
10.
Barker
,
A. R.
, and
Williams
,
J. E. F.
,
2000
, “
Transient Measurements of the Heat Transfer Coefficient in Unsteady, Turbulent Pipe Flow
,”
Int. J. Heat Mass Transfer
,
43
, pp.
3197
3207
.
11.
Habib
,
M. A.
,
Attya
,
A.
,
Eid
,
A.
, and
Aly
,
A.
,
2002
, “
Convective Heat Transfer Characteristics of Laminar Pulsating Pipe Air Flow
,”
Heat Mass Transf.
,
38
, pp.
221
232
.
12.
Simonetti
,
M.
,
Caillol
,
C.
,
Higelin
,
P.
,
Dumand
,
C.
, and
Revol
,
E.
,
2020
, “
Experimental Investigation and 1D Analytical Approach on Convective Heat Transfers in Engine Exhaust-type Turbulent Pulsating Flows
,”
Appl. Therm. Eng.
,
165
, p.
114548
.
13.
Wang
,
X.
, and
Zhang
,
N.
,
2005
, “
Numerical Analysis of Heat Transfer in Pulsating Turbulent Flow in a Pipe
,”
Int. J. Heat Mass Transfer
,
48
, pp.
3957
3970
.
14.
Hessami
,
M. A.
, and
Zulkifli
,
N. W.
,
2010
, “
Heat Transfer Enhancement Due to Flow Pulsation at Various Frequencies
,”
ASME Int. Mech. Eng. Cong. Expos. Proc.
,
9
, pp.
1019
1027
. DOI:10.1115/IMECE2009-10274
15.
Mathie
,
R.
, and
Markides
,
C.
,
2013
, “
Heat Transfer Augmentation in Unsteady Conjugate Thermal Systems—Part I: Semi-Analytical 1-D Framework
,”
Int. J. Heat Mass Transfer
,
56
(
1
), pp.
802
818
.
16.
Nakamura
,
H.
,
Saito
,
R.
, and
Yamada
,
S.
,
2020
, “
Delay in Response of Turbulent Heat Transfer Against Acceleration or Deceleration of Flow in a Pipe
,”
Int. J. Heat Fluid Flow
,
85
, p.
108661
.
17.
Li
,
G.
,
Zheng
,
Y.
,
Xu
,
Y.
,
Hu
,
G.
, and
Zhang
,
Z.
,
2014
, “
Experimental Investigation on Heat Transfer Enhancement From a Heated Circular Cylinder With Constant Heat Input Power in Turbulent Pulsating Crossflows
,”
Heat Mass Transf.
,
50
, pp.
1417
1427
.
18.
Hughes
,
M. T.
,
Kini
,
G.
, and
Garimella
,
S.
,
2021
, “
Status, Challenges, and Potential for Machine Learning in Understanding and Applying Heat Transfer Phenomena
,”
ASME. J. Heat Transfer-Trans. ASME.
,
143
(
12
), p.
120802
.
19.
Costall
,
A.
,
Cheong
,
V.
,
Flora
,
H.
,
Munasinghe
,
A.
,
Ivanov
,
R.
,
Kruiswyk
,
R. W.
, and
McDonald
,
J. R.
,
2018
, “
Development of a Novel Transient-Pulsating Flow Rig for Engine Air System Research Using GT-SUITE
,”
European GT Conference 2018
,
Frankfurt, Germany
,
Oct. 8–9
.
20.
Zografos
,
A. I.
,
Martin
,
W. A.
, and
Sunderland
,
J.
,
1987
, “
Equations of Properties as a Function of Temperature for Seven Fluids
,”
Comput. Methods Appl. Mech. Eng.
,
61
(
2
), pp.
177
187
.
21.
Szymko
,
S.
,
2006
,
The Development of an Eddy Current Dynamometer for Evaluation of Steady and Pulsating Turbocharger Turbine Performance
, Vol.
4.7
,
Imperial College
,
London, UK
.
22.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid. Sci.
,
1
(
1
), pp.
3
17
.
23.
Traverso
,
T.
,
Coletti
,
F.
,
Magri
,
L.
,
Karayiannis
,
T. G.
, and
Matar
,
O. K.
,
2023
, “
A Machine Learning Approach to the Prediction of Heat Transfer Coefficients in Microchannels
,”
International Heat Transfer Conference
,
Cape Town, South Africa
,
Aug. 14–18
.
24.
Wang
,
H.
,
Wang
,
C.
,
Wang
,
Y.
,
Gao
,
X.
, and
Yu
,
C.
,
2017
, “
Bayesian Forecasting and Uncertainty Quantifying of Stream Flows Using Metropolis–Hastings Markov Chain Monte Carlo Algorithm
,”
J. Hydrol.
,
549
, pp.
476
483
.
You do not currently have access to this content.