Abstract

Ceramic matrix composites (CMCs) offer higher allowable temperatures and reduced weight, making them an attractive prospect for parts in the hot section of a gas turbine engine. As CMCs are increasingly adapted into aero and land-based engines, there is a need to quantify the performance increase based on the potential for reduced cooling and increased firing temperatures. In this work, two static hot section components—the first-stage turbine vane and the first-stage turbine tip shroud (outer casing above the blade)—of a mid-sized power generation engine were modeled. Informed approximations about part geometry and cooling architectures were made to determine the cooling requirements of each part. Thermal boundary conditions for the turbine tip shroud and turbine vane were generated as a function of coolant mass flowrate using data from literature and applied to a 2D finite element analysis of the parts to determine maximum temperatures for both metallic and ceramic materials. A gas turbine cycle model was developed to simulate the performance of a mid-sized power generation turbine and used to determine the increase in efficiency due to a reduction in the cooling requirement for the CMC part compared to a conventional metal superalloy-based part. The potential reduction in chargeable cooling seen for the tip shroud ring was between 0.09% and 0.4% of the compressor mass flowrate, which corresponds to an increase in thermal efficiency between 0.11% and 0.45%. A similar analysis of the turbine vane resulted in a cooling reduction of 10.71% at the maximum turbine entry temperature considered which corresponds to a 3.4% increase in thermal efficiency.

References

1.
Mukerji
,
J.
,
1993
, “
Ceramic Matrix Composites
,”
Def. Sci. J.
,
43
(
4
), pp.
385
395
.
2.
van Roode
,
M.
, and
Bhattacharya
,
A. K.
,
2012
, “
Durability of Oxide/Oxide CMCs in Gas Turbine Combustors
,”
Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Volume 1: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Controls, Diagnostics and Instrumentation
,
Copenhagen, Denmark
,
June 11–15
, pp.
475
485
.
3.
van Roode
,
M.
,
Price
,
J.
,
Kimmel
,
J.
,
Miriyala
,
N.
,
Leroux
,
D.
,
Fahme
,
A.
, and
Smith
,
K.
,
2007
, “
Ceramic Matrix Composite Combustor Liners: A Summary of Field Evaluations
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
21
30
.
4.
Steibel
,
J.
,
2019
, “
Ceramic Matrix Composites Taking Flight at GE Aviation
,” https://ceramics.org/wp-content/uploads/2019/03/April-2019_Feature.pdf, Accessed December 19, 2023.
5.
Vedula
,
V.
,
Shi
,
J.
,
Jarmon
,
D.
,
Ochs
,
S.
,
Oni
,
L.
,
Lawton
,
T.
,
Green
,
K.
, et al.
,
2005
, “
Ceramic Matrix Composite Turbine Vanes for Gas Turbine Engines
,”
Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air. Volume 1: Turbo Expo 2005
,
Reno, NV
,
June 6–9
, ASMEDC, pp.
247
251
.
6.
DiCarlo
,
J. A.
, and
van Roode
,
M.
,
2006
, “
Ceramic Composite Development for Gas Turbine Engine Hot Section Components
,”
Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 2: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Controls, Diagnostics and Instrumentation; Environmental and Regulatory Affairs
,
Barcelona, Spain
,
May 8–11
, ASMEDC, pp.
221
231
.
7.
Spriet
,
P.
, and
Habarou
,
G.
,
1996
, “
Applications of Continuous Fiber Reinforced Ceramic Composites in Military Turbojet Engines
,”
Proceedings of the ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. Volume 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; General
,
Birmingham, UK
,
June 10–13
.
8.
Yajima
,
S.
,
Omori
,
M.
,
Hayashi
,
J.
,
Okamura
,
K.
,
Matsuzawa
,
T.
, and
Liaw
,
C.
,
1976
, “
Simple Synthesis of the Continuous SiC Fiber With High Tensile Strength
,”
Chem. Lett.
,
5
(
6
), pp.
551
554
.
9.
Wehrel
,
P.
,
2022
, “
Technological Level of CMC Components for Stationary Gas Turbines and Aero-Engines
,” DLR Report DLR-IB-AT-KP-2022-32.
10.
Brewer
,
D. N.
,
Verrilli
,
M.
, and
Calomino
,
A.
,
2006
, “
Ceramic Matrix Composite Vane Sublement Burst Testing
,”
Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 2: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Controls, Diagnostics and Instrumentation; Environmental and Regulatory Affairs
,
Barcelona, Spain
,
May 8–11
, ASMEDC, pp.
279
284
.
11.
Calomino
,
A.
, and
Verrilli
,
M.
,
2004
, “
Ceramic Matrix Composite Vane Sublement Fabrication
,”
Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air. Volume 2: Turbo Expo 2004
,
Vienna, Austria
,
June 14–17
, ASMEDC, pp.
401
407
.
12.
Corman
,
G. S.
,
Luthra
,
K. L.
, and
Bansal
,
N. P.
,
2005
,
"Silicon Melt Infiltrated Ceramic Composites (HiPerComp™)", Handbook of Ceramic Composites
,
Springer
,
New York, NY
, pp.
99
115
.
13.
Press Release
,
2019
, “
GE Recognized by the American Ceramics Society for World First Commercializing Ceramic Matrix Composites (CMCs) in Aircraft Engines
,” https://www.ge.com/news/press-releases/ge-recognized-american-ceramics-society-world-first-commercializing-ceramic-matrix.
14.
Staehler
,
J. M.
, and
Zawada
,
L. P.
,
2000
, “
Performance of Four Ceramic-Matrix Composite Divergent Flap Inserts Following Ground Testing on an F110 Turbofan Engine
,”
J. Am. Ceram. Soc.
,
83
(
7
), pp.
1727
1738
.
15.
Mo
,
D.
,
Roumeliotis
,
I.
,
Liu
,
Y.
,
Mourouzidis
,
C.
, and
Kissoon
,
S.
,
2023
, “
Dynamic Simulation and Aircraft Level Assessment of CMC Implementation on GTF Engine
,”
Int. J. Aeronaut. Space Sci.
,
24
(
3
), pp.
812
823
.
16.
Grondahl
,
C. M.
, and
Tsuchiya
,
T.
,
2001
, “
Performance Benefit Assessment of Ceramic Components in an MS9001FA Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
513
519
.
17.
Tong
,
M. T.
,
2010
, “
An Assessment of the Impact of Emerging High-Temperature Materials on Engine Cycle Performance
,”
Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air. Volume 1: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Education; Electric Power; Manufacturing Materials and Metallurgy
,
Glasgow, UK
,
June 14–18
, pp.
117
124
.
18.
Wehrel
,
P.
,
Schöffler
,
R.
,
Grunwitz
,
C.
,
Carvalho
,
F.
,
Plohr
,
M.
,
Häßy
,
J.
, and
Petersen
,
A.
,
2023
, “
Performance and Emissions Benefits of Cooled Ceramic Matrix Composite Vanes for High-Pressure Turbines
,”
ASME J. Eng. Gas Turbines Power
,
145
(
12
), p.
121016
.
19.
Boyle
,
R. J.
,
Parikh
,
A. H.
,
Halbig
,
M. C.
, and
Nagpal
,
V. K.
,
2013
, “
Design Considerations for Ceramic Matrix Composite Vanes for High Pressure Turbine Applications
,”
Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. Volume 4: Ceramics; Concentrating Solar Power Plants; Controls, Diagnostics and Instrumentation; Education; Electric Power; Fans and Blowers
,
San Antonio, TX
,
June 3–7
.
20.
Horlock
,
J. H.
,
Watson
,
D. T.
, and
Jones
,
T. V.
,
2001
, “
Limitations on Gas Turbine Performance Imposed by Large Turbine Cooling Flows
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
487
494
.
21.
Shrivastava
,
K. D.
, and
MacCallum
,
N. R. L.
,
1977
, “
The Effect of a Transversely Injected Stream on the Flow Through Turbine Cascades: Part I—Flow Effects
,”
Proceedings of the ASME 1977 International Gas Turbine Conference and Products Show
,
Philadelphia, PA
,
Mar. 27–31
.
22.
Gaunter
,
J. W.
,
1980
, “
Algorithm for Calculating Turbine Cooling Flow and the Resulting Decrease in Turbine Efficiency
,” NASA Technical Memorandum No. 81453.
23.
Shapiro
,
A. H.
,
1953
,
The Dynamics and Thermodynamics of Compressible Fluid Flow
,
Ronald Press
,
New York
.
24.
“Solar Turbines Taurus 60 Datasheet,” https://s7d2.scene7.com/is/content/Caterpillar/CM20150703-52095-49890, Accessed December 20, 2023.
25.
Young
,
J. B.
, and
Wilcock
,
R. C.
,
2002
, “
Modeling the Air-Cooled Gas Turbine: Part 2—Coolant Flows and Losses
,”
ASME J. Turbomach.
,
124
(
2
), pp.
214
221
.
26.
Day
,
C. R. B.
,
Oldfield
,
M. L. G.
, and
Lock
,
G. D.
,
2000
, “
Aerodynamic Performance of an Annular Cascade of Film Cooled Nozzle Guide Vanes Under Engine Representative Conditions
,”
Exp. Fluids
,
29
(
2
), pp.
117
129
.
27.
Horlock
,
J. H.
,
2013
,
Advanced Gas Turbine Cycles: A Brief Review of Power Generation Thermodynamics
,
Elsevier Science
,
Oxford, UK
.
28.
Chupp
,
R. E.
,
Helms
,
H. E.
,
McFadden
,
P. W.
, and
Brown
,
T. R.
,
1969
, “
Evaluation of Internal Heat-Transfer Coefficients for Impingement-Cooled Turbine Airfoils.
,”
J. Aircr.
,
6
(
3
), pp.
203
208
.
29.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton, FL
.
30.
Shibani
,
A. A.
, and
Özisik
,
M. N.
,
1977
, “
A Solution to Heat Transfer in Turbulent Flow Between Parallel Plates
,”
Int. J. Heat Mass Transfer
,
20
(
5
), pp.
565
573
.
31.
Nirmalan
,
N. V.
, and
Hylton
,
L. D.
,
1990
, “
An Experimental Study of Turbine Vane Heat Transfer With Leading Edge and Downstream Film Cooling
,”
ASME J. Turbomach.
,
112
(
3
), pp.
477
487
.
32.
Wilkins
,
P. H.
,
Lynch
,
S. P.
,
Thole
,
K. A.
,
Quach
,
S.
, and
Vincent
,
T.
,
2021
, “
Experimental Heat Transfer and Boundary Layer Measurements on a Ceramic Matrix Composite Surface
,”
ASME J. Turbomach.
,
143
(
6
), p.
061010
.
33.
Metzger
,
D. E.
,
Shepard
,
W. B.
, and
Haley
,
S. W.
,
1986
, “
Row Resolved Heat Transfer Variations in Pin-Fin Arrays Including Effects of Non-Uniform Arrays and Flow Convergence
,”
Proceedings of the ASME 1986 International Gas Turbine Conference and Exhibit. Volume 4: Heat Transfer; Electric Power
,
Dusseldorf, Germany
,
June 8–12
.
34.
Turner
,
E. R.
,
Wilson
,
M. D.
,
Hylton
,
L. D.
, and
Kaufman
,
R. M.
,
1985
, “
Turbine Vane External Heat Transfer. Volume 1: Analytical and Experimental Evaluation of Surface Heat Transfer Distributions with Leading Edge Showerhead Film Cooling
,” NASA CR-174827.
35.
Moustapha
,
H.
,
Zelesky
,
M. F.
,
Baines
,
N. C.
, and
Japiske
,
D.
,
2003
,
Axial and Radial Turbines
,
Concepts ETI, Inc.
,
Exeter, UK
.
36.
Cunha
,
F. J.
,
2006
, “
Heat Transfer Analysis
,” https://www.netl.doe.gov/sites/default/files/gas-turbine-handbook/4-4.pdf.
37.
Rätzer-Scheibe
,
H.-J.
, and
Schulz
,
U.
,
2007
, “
The Effects of Heat Treatment and Gas Atmosphere on the Thermal Conductivity of APS and EB-PVD PYSZ Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
201
(
18
), pp.
7880
7888
.
38.
Zhu
,
D.
,
Ohji
,
T.
, and
Singh
,
M.
,
2016
, “Advanced Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composite Turbine Components,”
Engineered Ceramics: Current Status and Future Prospects
,
Wiley
,
Hoboken, NJ
, pp.
187
202
.
39.
Dicarlo
,
J. A.
,
Yun
,
H. M.
,
Morscher
,
G. N.
,
Thomas-Ogbuji
,
L. U.
,
Krenkel
,
W.
,
Naslain
,
R.
, and
Schneider
,
H.
,
2001
, “Progress in SiC/SiC Composites for Engine Applications,”
High Temperature Ceramic Matrix Composites
,
Wiley
,
Hoboken, NJ
, pp.
777
782
.
40.
41.
Bollapragada
,
S.
,
Zeng
,
X.
,
Fox
,
M. D.
,
Elam
,
B. R.
, and
Ryan
,
D.
,
2023
, “
Internally Cooled Tip Shroud Component
,” U.S. Patent No. EP1083299A2.
42.
Jubran
,
B. A.
,
Hamdan
,
M. A.
, and
Abdualh
,
R. M.
,
1993
, “
Enhanced Heat Transfer, Missing Pin, and Optimization for Cylindrical Pin Fin Arrays
,”
ASME J. Heat Transfer
,
115
(
3
), pp.
576
583
.
43.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1985
, “
Heat Transfer in Automobile Radiators of the Tubular Type
,”
Int. Commun. Heat Mass Transfer
,
12
(
1
), pp.
3
22
.
44.
Camci
,
C.
, and
Gumusel
,
B.
,
2011
, “
Casing Convective Heat Transfer Coefficient and Reference Freestream Temperature Determination Near an Axial Flow Turbine Rotor
,”
ASME J. Heat Transfer
,
133
(
8
), p.
081603
.
45.
Kwak
,
J. S.
, and
Han
,
J.-C.
,
2003
, “
Heat-Transfer Coefficients of a Turbine Blade-Tip and Near-Tip Regions
,”
J. Thermophys. Heat Transfer
,
17
(
3
), pp.
297
303
.
46.
Clark
,
K.
,
Barringer
,
M.
,
Johnson
,
D.
,
Thole
,
K.
,
Grover
,
E.
, and
Robak
,
C.
,
2018
, “
Effects of Purge Flow Configuration on Sealing Effectiveness in a Rotor–Stator Cavity
,”
ASME J. Eng. Gas Turbines Power
,
140
(
11
), p.
112502
.
You do not currently have access to this content.