Abstract

Manufactured compressor blades deviate from their intended design, leading to a shift in the mean and scattering of aerodynamic performance. To mitigate performance deterioration without increasing manufacturing costs, an accurate and efficient evaluation of aerodynamic uncertainty, known as uncertainty quantification (UQ), is crucial. The high cost of three-dimensional computational fluid dynamics (CFD) simulations has prompted UQ studies to predominantly target two-dimensional cases or extend to three dimensions with a limited number of geometric variables. Since geometric deviations exist at various positions on three-dimensional blades, accurately describing them would necessitate a high-dimensional geometric deviation space. To investigate high-dimensional uncertainty problems, an efficient adjoint-based UQ method is proposed and demonstrated using the three-dimensional transonic fan, NASA Rotor 67. The method proves to be not only hundreds of times faster than full-fidelity CFD but also yields results with satisfactory accuracy. The investigation into the underlying mechanism reveals that geometric uncertainties significantly influence shock waves, tip clearance vortices, corner vortices, and the radial distribution of three-dimensional flows, ultimately resulting in deviations in aerodynamic performance.

References

1.
Roberts
,
W. B.
,
Armin
,
A.
,
Kassaseya
,
G.
,
Suder
,
K. L.
,
Thorp
,
S. A.
, and
Strazisar
,
A. J.
,
2002
, “
The Effect of Variable Chord Length on Transonic Axial Rotor Performance
,”
ASME J. Turbomach.
,
124
(
3
), pp.
351
357
.
2.
Garzon
,
V. E.
, and
Darmofal
,
D. L.
,
2003
, “
Impact of Geometric Variability on Axial Compressor Performance
,”
ASME J. Turbomach.
,
125
(
4
), pp.
692
703
.
3.
Dow
,
E. A.
, and
Wang
,
Q.
,
2014
, “
Simultaneous Robust Design and Tolerancing of Compressor Blades
,”
Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Düsseldorf, Germany
,
June 16–20
, ASME, p. V02BT45A007.
4.
Luo
,
J.
, and
Liu
,
F.
,
2018
, “
Statistical Evaluation of Performance Impact of Manufacturing Variability by an Adjoint Method
,”
Aerosp. Sci. Technol.
,
77
, pp.
471
484
.
5.
Wang
,
J.
, and
Zheng
,
X.
,
2020
, “
Review of Geometric Uncertainty Quantification in Gas Turbines
,”
ASME J. Eng. Gas. Turbines. Power.
,
142
(
7
), p.
070801
.
6.
Qin
,
R.
,
Ju
,
Y.
,
Spence
,
S.
, and
Zhang
,
C.
,
2021
, “
Metamodel-Driven Data Mining Model to Support Three-Dimensional Design of Centrifugal Compressor Stage
,”
ASME. J. Turbomach.
,
143
(
12
), p.
121013
.
7.
Guo
,
Z.
,
Chu
,
W.
, and
Zhang
,
H.
,
2022
, “
Uncertainty Analysis of Global and Local Performance Impact of Inflow and Geometric Variations Using Sparse Grid-Based Nipc
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
236
(
7
), pp.
1239
1256
.
8.
Liu
,
Y.
,
Ju
,
Y.
,
Qin
,
R.
,
Jiang
,
W.
,
Spence
,
S.
, and
Zhang
,
C.
,
2023
, “
Collaborative Robust Design Optimization of Blade Geometry and Manufacturing Tolerance for a Transonic Centrifugal Impeller
ASME. J. Turbomach.
,
145
(
7
), p.
071001
.
9.
Ma
,
C.
,
Gao
,
L.
,
Wang
,
H.
,
Li
,
R.
, and
Wu
,
B.
,
2021
, “
Influence of Leading Edge With Real Manufacturing Error on Aerodynamic Performance of High Subsonic Compressor Cascades
,”
Chin. J. Aeronaut.
,
34
(
6
), pp.
220
232
.
10.
Guo
,
Z.
,
Chu
,
W.
, and
Zhang
,
H.
,
2022
, “
A Data-Driven Non-Intrusive Polynomial Chaos for Performance Impact of High Subsonic Compressor Cascades With Stagger Angle and Profile Errors
,”
Aerosp. Sci. Technol.
,
129
, p.
107802
.
11.
Ghate
,
D.
, and
Giles
,
M. B.
,
2005
, “
Inexpensive Monte Carlo Uncertainty Analysis
,”
Proceedings of the Recent Trends in Aerospace Design and Optimization: Symposium on Applied Aerodynamics and Design of Aerospace Vehicles
,
Hyderabad, India
, Tata Mc Graw-Hill.
12.
Zhang
,
Q.
,
Xu
,
S.
,
Yu
,
X.
,
Liu
,
J.
,
Wang
,
D.
, and
Huang
,
X.
,
2022
, “
Nonlinear Uncertainty Quantification of the Impact of Geometric Variability on Compressor Performance Using an Adjoint Method
,”
Chin. J. Aeronaut.
,
35
(
2
), p.
5
.
13.
Xu
,
S.
,
Li
,
Y.
,
Huang
,
X.
, and
Wang
,
D.
,
2021
, “
Robust Bewton–Krylov Adjoint Solver for the Sensitivity Analysis of Turbomachinery Aerodynamics
,”
AIAA J.
,
59
(
10
), pp.
1
17
.
14.
Strazisar
,
A. J.
, and
Powell
,
J. A.
,
1981
, “
Laser Anemometer Measurements in a Transonic Axial Flow Compressor Rotor
,”
ASME J. Eng. Power
,
103
(
2
), pp.
430
437
.
15.
Seshadri
,
P.
,
Shahpar
,
S.
, and
Parks
,
G. T.
,
2014
, “
Robust Compressor Blades for Desensitizing Operational Tip Clearance Variations
,”
Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition.
,
Düsseldorf, Germany
,
June 16–20
, ASME, p. V02AT37A043.
16.
Bammert
,
K.
, and
Sandstede
,
H.
,
1976
, “
Influences of Manufacturing Tolerances and Surface Roughness of Blades on the Performance of Turbines
,”
ASME J. Eng. Power
,
98
(
1
), pp.
29
36
.
17.
Aviation Industry Corporation of China
,
1999
, “Hb 5647-98 Blade Labeling, Tolerance and Surface Roughness.” CGTE (in Chinese).
18.
Liu
,
J.
,
Yu
,
X.
,
Meng
,
D.
,
Shi
,
W.
, and
Liu
,
B.
,
2021
, “
State and Effect of Manufacture Deviations for a Compressor Blade in High-Pressure Compressor Outlet Stage
,”
Acta Aeronaut. Astronaut. Sin.
,
42
(
2
), pp.
348
364
.
19.
Chi
,
M. A.
,
Li-min
,
G. A. O.
,
Rui-yu
,
L. I.
, and
Jie
,
L. I.
,
2020
, “
Effects of Tip Clearance Size Fluctuation in Actual Operations on Aerodynamic Performance of the Transonic Rotor
,”
J. Propul. Technol.
,
41
(
09
), pp.
1958
1966
.
20.
Xu
,
S.
,
Zhang
,
Q.
,
Wang
,
D.
, and
Huang
,
X.
,
2023
, “
Uncertainty Quantification of Compressor Map Using the Monte Carlo Approach Accelerated by an Adjoint-Based Nonlinear Method
,”
Aerospace
,
10
(
3
), p.
280
.
21.
Wang
,
J.
,
Wang
,
B.
,
Yang
,
H.
,
Sun
,
Z.
,
Zhou
,
K.
, and
Zheng
,
X.
,
2023
, “
Compressor Geometric Uncertainty Quantification Under Conditions From Near Choke to Near Stall
,”
Chin. J. Aeronaut.
,
36
(
3
), pp.
16
29
.
22.
Xu
,
S.
, and
Timme
,
S.
,
2017
, “
Robust and Efficient Adjoint Solver for Complex Flow Conditions
,”
Comput. Fluids
,
148
, pp.
26
38
.
23.
Xu
,
S.
,
Mohanamuraly
,
P.
,
Wang
,
D.
, and
Müller
,
J.-D.
,
2020
, “
Newton–Krylov Solver for Robust Turbomachinery Aerodynamic Analysis
,”
AIAA J.
,
58
(
3
), pp.
1320
1336
.
24.
Javed
,
A.
,
Hartuc
,
T.
,
Pecnik
,
R.
, and
van Buijtenen
,
J.
,
2015
, “
Probabilistic Analysis of Manufacturing Uncertainties for an Automotive Turbocharger Centrifugal Compressor Using Numerical and Experimental Methods
,” 11th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics,
European Turbomachinery Society
.
25.
Williams
,
R.
,
Gregory-Smith
,
D.
,
He
,
L.
, and
Ingram
,
G.
,
2010
, “
Experiments and Computations on Large Tip Clearance Effects in a Linear Cascade
,”
ASME J. Turbomach.
,
132
(
2
), p.
021018
.
26.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
Proceedings of the ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition
,
Cincinnati, OH
,
May 24–27
, ASME, p. V002T14A001.
You do not currently have access to this content.