Quantification of uncertainty in the simulation results becomes difficult for complex real-world systems with little or no experimental data. This paper describes a validation and uncertainty quantification (VUQ) approach that integrates computational and experimental data through a range of experimental scales and a hierarchy of complexity levels. This global approach links dissimilar experimental datasets at different scales, in a hierarchy, to reduce quantified error bars on case with sparse data, without running additional experiments. This approach was demonstrated by applying on a real-world problem, greenhouse gas (GHG) emissions from wind tunnel flares. The two-tier validation hierarchy links, a buoyancy-driven helium plume and a wind tunnel flare, to increase the confidence in the estimation of GHG emissions from wind tunnel flares from simulations.

References

1.
Bayarri
,
M. J.
,
Berger
,
J.
,
Paulo
,
R.
,
Sacks
,
J.
,
Cafeo
,
J.
,
Cavendish
,
J.
,
Lin
,
C.
, and
Tu
,
J.
,
2007
, “
A Framework for Validation of Computer Models
,”
Technometrics
,
49
(
2
), pp.
138
154
.
2.
Feeley
,
R.
,
Seiler
,
P.
,
Packard
,
A.
, and
Frenklach
,
M.
,
2004
, “
Consistency of a Reaction Dataset
,”
J. Phys. Chem. A
,
108
(
44
), pp.
9573
9583
.
3.
Feeley
,
R.
,
Frenklach
,
M.
,
Onsum
,
M.
,
Russi
,
T.
,
Arkin
,
A.
, and
Packard
,
A.
,
2006
, “
Model Discrimination Using Data Collaboration
,”
J. Phys. Chem. A
,
110
(
21
), pp.
6803
6813
.
4.
Frenklach
,
M.
,
Packard
,
A.
,
Seiler
,
P.
, and
Feeley
,
R.
,
2004
, “
Collaborative Data Processing in Developing Predictive Models of Complex Reaction Systems
,”
Int. J. Chem. Kinet.
,
36
(
1
), pp.
57
66
.
5.
Baukal
,
C. E.
, Jr.
,
2001
,
The John Zink Combustion Hand Book
,
CRC Press
, Boca Raton, FL, pp.
589
634
.
6.
Johnson
,
M. R.
, and
Kostiuk
,
L. W.
,
2000
, “
Efficiencies of Low-Momentum Jet Diffusion Flames in Crosswinds
,”
Combust. Flame
,
123
(
1–2
), pp.
189
200
.
7.
Bourguignon
,
E.
,
Johnson
,
M. R.
, and
Kostiuk
,
L. W.
,
1999
, “
The Use of Closed-Loop Wind Tunnel for Measuring the Combustion Efficiency of Flames in a Cross Flow
,”
Combust. Flame
,
119
(
3
), pp.
319
334
.
8.
Johnson
,
M. R.
, and
Kostuik
,
L. W.
,
2002
, “
A Parametric Model for the Efficiency of a Flare in Crosswind
,”
Proc. Combust. Inst.
,
29
(
2
), pp.
1943
1950
.
9.
Leahey
,
D. M.
, and
Preston
,
K.
,
2001
, “
Theoretical and Observational Assessments of Flare Efficiencies
,”
J. Air Waste Manage. Assoc.
,
51
(
12
), pp.
1610
1616
.
10.
Pohl
,
J. H.
,
Lee
,
J.
, and
Payne
,
R.
,
1986
, “
Combustion Efficiency of Flares
,”
Combust. Sci. Technol.
,
50
(
4–6
), pp.
217
231
.
11.
Blackwood
,
T. R.
,
2004
, “
An Evaluation of Flare Combustion Efficiency Using Open-Path Fourier Transform Infrared Technology
,”
J. Air Waste Manage. Assoc.
,
50
(10), pp.
1714
1722
.
12.
Strosher
,
M. T.
,
2000
, “
Characterization of Emissions From Diffusion Flare Systems
,”
J. Air Waste Manage. Assoc.
,
50
(
10
), pp.
1723
1733
.
13.
O'Hern
,
T. J.
,
Weckman
,
E. J.
,
Gerhart
,
A. L.
,
Tieszen
,
S. R.
, and
Schefer
,
R. W.
,
2005
, “
Experimental Study of a Turbulent Buoyant Helium Plume
,”
J. Fluid Mech.
,
544
, pp.
143
171
.
14.
Maragkos
,
G.
,
Rauwoens
,
P.
,
Wang
,
Y.
, and
Merci
,
B.
,
2013
, “
Large Eddy Simulation of the Flow in the Near-Field Region of a Turbulent Buoyant Helium Plume
,”
Flow, Turbul. Combust.
,
90
(
3
), pp.
511
543
.
15.
Gogolek
,
P. E. G.
, and
Hayden
,
A. C. S.
,
2004
, “
Performance of Flare Flames in a Crosswind With Nitrogen Dilution
,”
J. Can. Pet. Technol.
,
43
(
8
), pp.
43
47
.
16.
Jatale
,
A.
,
Smith
,
P.
,
Smith
,
S.
,
Thornock
,
J.
,
Spinti
,
J.
, and
Hradisky
,
M.
,
2015
, “
Application of a Verification, Validation and Uncertainty Quantification Framework to a Turbulent Buoyant Helium Plume
,”
Flow, Turbul. Combust.
,
95
(
1
), pp.
143
168
.
17.
Jatale
,
A.
,
Smith
,
P.
,
Thornock
,
J.
,
Smith
,
S.
, and
Hradisky
,
M.
,
2016
, “
A Validation of Flare Combustion Efficiency Predictions From Large Eddy Simulations
,”
J. Verif. Valid. Uncert.
,
1
(
2
), p. 021001.
18.
Jatale
,
A.
,
2014
, “
Combustion Efficiency From Industrial Flares With Uncertainty Quantification
,” Ph.D. dissertation, University of Utah, Salt Lake City, UT.
19.
Lehtiniemi
,
H.
,
Mauss
,
F.
,
Balthasar
,
M.
, and
Magnusson
,
I.
,
2006
, “
Modeling Diesel Spray Ignition Using Detailed Chemistry With a Progress Variable Approach
,”
Combust. Sci. Technol.
,
178
(
10–11
), pp.
1977
1997
.
20.
Xin
,
Y.
, and
Gore
,
J. P.
,
2005
, “
Two-Dimensional Soot Distributions in Buoyant Turbulent Fires
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
719
726
.
21.
Wen
,
J. X.
,
Kang
,
K.
,
Donchev
,
T.
, and
Karwatzki
,
J. M.
,
2007
, “
Validation of FDS for the Prediction of Medium-Scale Pool Fires
,”
Fire Saf. J.
,
42
(
2
), pp.
127
138
.
22.
Chung
,
W.
, and
Devaud
,
C. B.
,
2008
, “
Buoyancy-Corrected k–Epsilon Models and Large Eddy Simulation Applied to a Large Axisymmetric Helium Plume
,”
Int. J. Numer. Methods Fluids
,
58
(
1
), pp.
57
89
.
23.
Yimer
,
I.
,
Campbell
,
I.
, and
Jiang
,
L.-Y.
,
2002
, “
Estimation of the Turbulent Schmidt Number From Experimental Profiles of Axial Velocity and Concentration for High-Reynolds-Number Jet Flows
,”
Can. Aeronaut. Space J.
,
48
(
3
), pp.
195
200
.
24.
Waston
,
D. F.
,
1992
,
Contouring: A Guide to the Analysis and Display of Spatial Data
,
Pergamon Press
,
New York
, pp.
130
136
.
25.
Sloan
,
S. W.
,
1993
, “
A Fast Algorithm for Generating Constrained Delaunay Triangulations
,”
Comput. Struct.
,
47
(
3
), pp.
441
450
.
You do not currently have access to this content.