Abstract

Over the past 50 years, an industry-wide shift within the nuclear community has led to increased utilization of computational fluid dynamics (CFD) to supplement nuclear reactor safety (NRS) analyses. Although several “best practice” guidelines exist for individual safety evaluations, comprehensive validation efforts against benchmark-quality experimental data must occur to ensure the accuracy of these numerical models. One such area of interest to the nuclear engineering community is the capacity of computational models to predict heat transfer across a spectrum of buoyancy conditions. In this vein, the present investigation provides a robust assessment of 13 different Reynolds-averaged Navier–Stokes (RANS) turbulence models and their ability to predict thermal system response quantities (SRQs) in buoyancy-influenced forced convection conditions. Using experimental data from the rotatable buoyancy tunnel (RoBuT) as the basis of comparison, the predictive capabilities of each turbulence model are evaluated in both buoyancy-aided and opposed configurations. Thermocouple measurements are mapped to the boundaries of the computational models to permit direct comparisons of various SRQs. ASME standards are used to quantify numerical discretization uncertainties in the modeled results, while a Monte Carlo procedure is developed to account for input uncertainty. Generally, the collection of turbulence models fails to accurately predict thermal SRQs in the buoyancy-aided configuration, while analogous errors in streamwise velocity are observed in the buoyancy-opposed orientation. Both modeling errors are attributed to improper predictions of the turbulent viscosity, which will need to be rectified prior to wide-scale adoption for nuclear reactor safety calculations.

References

References
1.
Idaho National Laboratory
,
2018
, “RELAP5-3D, Version 4.4.2,”
Idaho National Laboratory
,
Idaho Falls, ID
.
2.
Zachry Nuclear Engineering
,
2019
, “GOTHIC, Version 8.3,”
Zachry Nuclear Engineering
,
Richland, Washington, DC
.
3.
Sandia National Laboratories
,
1997
, “CONTAIN, Version 2.0,”
Sandia National Laboratories
,
Albuquerque, NM
.
4.
Sandia National Laboratories
,
2017
, “
MELCOR, Version 2.2.9541,”
Sandia National Laboratories
,
Albuquerque, NM
.
5.
Smith
,
B. L.
, Andreani, M., Bieder, U., Bestion, D., Ducros, F., Graffard, E., Heitsch, M., Scheuerer, M., Henriksson, M., Hoehne, T., and Rohde, U.,
2008
,
Assessment of Computational Fluid Dynamics (CFD) for Nuclear Reactor Safety Problems
,
Organisation for Economic Co-Operation and Development
,
Paris, France
.
6.
MacDonald
,
P. E.
, Sterbentz, J. W., Sant, R. L., Bayless, P. D., Schultz, R. R., Gougar, H. D., Moore, R. L., Ougouag, A. M., and Terry, W. K.,
2003
, “
NGNP Preliminary Point Design—Results of the Initial Neutronics and Thermal-Hydraulics Assessments
,”
Idaho National Engineering and Environmental Laboratory
,
Idaho Falls, ID
.
7.
Sato
,
H.
,
Johnson
,
R. W.
, and
Schultz
,
R. R.
,
2010
, “
Computational Fluid Dynamic Analysis of Core Bypass Flow Phenomena in a Prismatic VHTR
,”
Ann. Nucl. Energy
,
37
(
9
), pp.
1172
1185
.10.1016/j.anucene.2010.04.021
8.
Johnson
,
R. W.
,
2012
, “
Mixed Convection in the VHTR in the Event of a LOFA
,”
Idaho National Laboratory
,
Idaho Falls, ID
.
9.
Smith
,
B. L.
,
2010
, “
Assessment of CFD Codes Used in Nuclear Reactor Safety Simulations
,”
Nucl. Eng. Technol.
,
42
(
4
), pp.
339
364
.10.5516/NET.2010.42.4.339
10.
Tung
,
Y.-H.
,
Ferng
,
Y.-M.
,
Johnson
,
R. W.
, and
Chieng
,
C.-C.
,
2013
, “
Study of Natural Circulation in a VHTR After a LOFA Using Different Turbulence Models
,”
Nucl. Eng. Des.
,
263
, pp.
206
217
.10.1016/j.nucengdes.2013.04.009
11.
Tung
,
Y.-H.
,
Johnson
,
R. W.
,
Ferng
,
Y.-M.
, and
Chieng
,
C.-C.
,
2014
, “
Modeling Strategies to Compute Natural Circulation Using CFD in a VHTR After a LOFA
,”
Nucl. Eng. Des.
,
275
, pp.
80
90
.10.1016/j.nucengdes.2014.04.012
12.
Tung
,
Y.-H.
,
Johnson
,
R. W.
,
Ferng
,
Y.-M.
, and
Chieng
,
C.-C.
,
2014
, “
Bypass Flow Computations on the LOFA Transient in a VHTR
,”
Appl. Therm. Eng.
,
62
(
2
), pp.
415
423
.10.1016/j.applthermaleng.2013.10.003
13.
Tung
,
Y.-H.
,
Ferng
,
Y.-M.
,
Johnson
,
R. W.
, and
Chieng
,
C.-C.
,
2016
, “
Transient LOFA Computations for a VHTR Using One-Twelfth Core Flow Models
,”
Nucl. Eng. Des.
,
301
, pp.
89
100
.10.1016/j.nucengdes.2016.03.002
14.
Schultz
,
R. R.
,
Gougar
,
H.
,
Vegendla
,
P.
,
Obabko
,
A.
, and
Thomas
,
J.
,
2017
, “
Identification and Characterization of Thermal Fluid Phenomena Associated With Selected Operating/Accident Scenarios in Modular High Temperature Gas-Cooled Reactors
,”
Idaho National Laboratory
,
Idaho Falls, ID
.
15.
Keshmiri
,
A.
,
Revell
,
A.
, and
Darabkhani
,
H. G.
,
2016
, “
Assessment of a Common Nonlinear Eddy-Viscosity Turbulence Model in Capturing Laminarization in Mixed Convection Flows
,”
Numer. Heat Transfer, Part A
,
69
(
2
), pp.
146
115
.10.1080/10407782.2015.1069672
16.
Kim
,
W. S.
,
He
,
S.
, and
Jackson
,
J. D.
,
2008
, “
Assessment by Comparison With DNS Data of Turbulence Models Used in Simulations of Mixed Convection
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1293
1312
.10.1016/j.ijheatmasstransfer.2007.12.002
17.
Kasagi
,
N.
, and
Nishimura
,
M.
,
1997
, “
Direct Numerical Simulation of Combined Forced and Natural Convection in a Vertical Plane Channel
,”
Int. J. Heat Fluid Flow
,
18
(
1
), pp.
88
99
.10.1016/S0142-727X(96)00148-8
18.
You
,
J.
,
Yoo
,
J. Y.
, and
Choi
,
H.
,
2003
, “
Direct Numerical Simulation of Heated Vertical Air Flows in Fully Developed Turbulent Mixed Convection
,”
Int. J. Heat Mass Transfer
,
46
(
9
), pp.
1613
1627
.10.1016/S0017-9310(02)00442-8
19.
Tanaka
,
H.
,
Maruyama
,
S.
, and
Shunichi
,
H.
,
1987
, “
Combined Forced and Natural Convection Heat Transfer for Upward Flow in a Uniformly Heated, Vertical Pipe
,”
Int. J. Heat Mass Transfer
,
30
(
1
), pp.
165
174
.10.1016/0017-9310(87)90069-X
20.
Jackson
,
J. D.
,
Cotton
,
M. A.
, and
Axcell
,
B. P.
,
1989
, “
Studies of Mixed Convection in Vertical Tubes
,”
Int. J. Heat Fluid Flow
,
10
(
1
), pp.
2
15
.10.1016/0142-727X(89)90049-0
21.
Cotton
,
M. A.
, and
Jackson
,
J. D.
,
1990
, “
Vertical Tube Air Flows in the Turbulent Mixed Convection Regime Calculated Using a Low-Reynolds-Number k ∼ ϵ Model
,”
Int. J. Heat Mass Transfer
,
33
(
2
), pp.
275
286
.10.1016/0017-9310(90)90098-F
22.
Mikielewicz
,
D. P.
,
Shehata
,
A.-M.
,
Jackson
,
J. D.
, and
McEligot
,
D. M.
,
2002
, “
Temperature, Velocity and Mean Turbulence Structure in Strongly Heated Internal Gas Flows: Comparison of Numerical Predictions With Data
,”
Int. J. Heat Mass Transfer
,
45
(
21
), pp.
4333
4352
.10.1016/S0017-9310(02)00119-9
23.
Keshmiri
,
A.
,
2011
, “
Effects of Various Physical and Numerical Parameters on Heat Transfer in Vertical Passages at Relatively Low Heat Loading
,”
ASME J. Heat Transfer
,
133
(
9
), p.
092502
.10.1115/1.4003925
24.
Keshmiri
,
A.
,
Cotton
,
M. A.
,
Addad
,
Y.
, and
Laurence
,
D.
,
2012
, “
Turbulence Models and Large Eddy Simulations Applied to Ascending Mixed Convection Flows
,”
Flow, Turbul. Combust.
,
89
(
3
), pp.
407
434
.10.1007/s10494-012-9401-4
25.
Keshmiri
,
A.
,
Uribe
,
J.
, and
Shokri
,
N.
,
2015
, “
Benchmarking of Three Different CFD Codes in Simulating Natural, Forced, and Mixed Convection Flows
,”
Numer. Heat Transfer, Part A
,
67
(
12
), pp.
1324
1351
.10.1080/10407782.2014.965115
26.
Launder
,
B. E.
, and
Sharma
,
B. I.
,
1974
, “
Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transfer
,
1
(
2
), pp.
131
138
.10.1016/0094-4548(74)90150-7
27.
Mentor
,
F. R.
,
1992
, “
Improved Two-Equation kω Turbulence Models for Aerodynamic Flows
,”
NASA Ames Research Center
,
Moffett Field, CA
.
28.
Mahaffy
,
J. H.
, Chung, B., Song, C., Dubois, F., Graffard, E., Ducros, F., Heitsch, M., Scheuerer, M., Henriksson, M., Komen, E., and Moretti, F.,
2007
, “
Best Practice Guidelines for the Use of CFD in Nuclear Reactor Safety Applications
,”
Organisation for Economic Co-Operation and Development
,
Paris, France
.
29.
Zigh
,
G.
, and
Solis
,
J.
,
2013
, “
Computational Fluid Dynamics Best Practice Guidelines for Dry Cask Applications
,”
U.S. Nuclear Regulatory Commission
,
Washington, DC
.
30.
Harris
,
J. R.
,
Lance
,
B. W.
, and
Smith
,
B. L.
,
2016
, “
Experimental Validation Data for Computational Fluid Dynamics of Forced Convection on a Vertical Flat Plate
,”
ASME J. Fluids Eng.
,
138
(
1
), p.
011401
.10.1115/1.4031007
31.
Lance
,
B. W.
,
Harris
,
J. R.
, and
Smith
,
B. L.
,
2016
, “
Experimental Validation Benchmark Data for Computational Fluid Dynamics of Mixed Convection on a Vertical Flat Plate
,”
ASME J. Verif. Valid. Uncertainty Quantif.
,
1
(
2
), p.
021005
.10.1115/1.4032499
32.
Lance
,
B. W.
, and
Smith
,
B. L.
,
2016
, “
Experimental Validation Benchmark Data for Computational Fluid Dynamics of Transient Convection From Forced to Natural With Flow Reversal on a Vertical Flat Plate
,”
ASME J. Verif. Valid. Uncertainty Quantif.
,
1
(
3
), p.
031005
.10.1115/1.4033963
33.
Lance
,
B. W.
,
Harris
,
J. R.
,
Iverson
,
J. M.
,
Spall
,
R. E.
, and
Johnson
,
R. W.
,
2013
, “
Validation Study on Forced and Mixed Convection in the Rotatable Buoyancy Tunnel
,”
ASME
Paper No. FEDSM2013-1621410.1115/FEDSM2013-16214.
34.
ANSYS
,
2019
, “ANSYS ICEM CFD, Release 19.0,”
ANSYS
,
Canonsburg, PA
.
35.
Pope
,
S. B.
,
2000
,
Turbulent Flows
, 1st ed.,
Cambridge University Press
,
New York, NY
, p.
771
.
36.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
, 2nd ed.,
DCW Industries
,
La Cañada Flintridge, CA
, p.
522
.
37.
Versteeg
,
H.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
, 2nd ed.,
Pearson Education Limited
,
Harlow, UK
, p.
503
.
38.
Clifford
,
C. E.
,
Fradeneck
,
A. D.
,
Oler
,
A. M.
,
Salkhordeh
,
S.
, and
Kimber
,
M. L.
,
2019
, “
Computational Study of Full-Scale VHTR Lower Plenum for Turbulent Mixing Assessment
,”
Ann. Nucl. Energy
,
134
, pp.
101
113
.10.1016/j.anucene.2019.05.055
39.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
40.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New kϵ Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
41.
Yakhot
,
V.
,
Orszag
,
S. A.
,
Thangam
,
S.
,
Gatski
,
T. B.
, and
Speziale
,
C. G.
,
1992
, “
Development of Turbulence Models for Shear Flows by a Double Expansion Technique
,”
Phys. Fluids A: Fluid Dyn.
,
4
(
7
), pp.
1510
1520
.10.1063/1.858424
42.
Jongen
,
T.
,
1998
, “
Simulation and Modeling of Turbulent Incompressible Fluid Flows
,” Doctoral dissertation, Mechanical Engineering,
École Polytechnique Fédérale de Lausanne
,
Lausanne, Switzerland
.
43.
Wolfshtein
,
M.
,
1969
, “
The Velocity and Temperature Distribution in One-Dimensional Flow With Turbulence Augmentation and Pressure Gradient
,”
Int. J. Heat Mass Transfer
,
12
(
3
), pp.
301
318
.10.1016/0017-9310(69)90012-X
44.
Abid
,
R.
,
1993
, “
Evaluation of Two-Equation Turbulence Models for Predicting Transitional Flows
,”
Int. J. Eng. Sci.
,
31
(
6
), pp.
831
840
.10.1016/0020-7225(93)90096-D
45.
Abe
,
K.
,
Kondoh
,
T.
, and
Nagano
,
Y.
,
1994
, “
A New Turbulence Model for Predicting Fluid Flow and Heat Transfer in Separating and Reattaching Flows—I: Flow Field Calculations
,”
Int. J. Heat Mass Transfer
,
37
(
1
), pp.
139
151
.10.1016/0017-9310(94)90168-6
46.
Chang
,
K.-C.
,
Hsieh
,
W. D.
, and
Chen
,
C.-S.
,
1995
, “
A Modified Low-Reynolds-Number Turbulence Model Applicable to Recirculating Flow in Pipe Expansion
,”
ASME J. Fluids Eng.
,
117
(
3
), pp.
417
423
.10.1115/1.2817278
47.
Lam
,
C. K. G.
, and
Bremhorst
,
K.
,
1981
, “
A Modified Form of the kε Model for Predicting Wall Turbulence
,”
ASME J. Fluids Eng.
,
103
(
3
), pp.
456
460
.10.1115/1.3240815
48.
Yang
,
Z.
, and
Shih
,
T.-H.
,
1993
, “
New Time Scale Based kϵ Model for Near-Wall Turbulence
,”
AIAA J.
,
31
(
7
), pp.
1191
1198
.10.2514/3.11752
49.
Patel
,
V. C.
,
Rodi
,
W.
, and
Scheuerer
,
G.
,
1985
, “
Turbulence Models for Near-Wall and Low Reynolds Number Flows: A Review
,”
AIAA J.
,
23
(
9
), pp.
1308
1319
.10.2514/3.9086
50.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
(
3
), pp.
537
566
.10.1017/S0022112075001814
51.
Gibson
,
M. M.
, and
Launder
,
B. E.
,
1978
, “
Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer
,”
J. Fluid Mech.
,
86
(
3
), pp.
491
511
.10.1017/S0022112078001251
52.
Daly
,
B. J.
, and
Harlow
,
F. H.
,
1970
, “
Transport Equations in Turbulence
,”
The Phys. Fluids
,
13
(
11
), pp.
2634
2649
.10.1063/1.1692845
53.
Launder
,
B. E.
,
1989
, “
Second-Moment Closure and Its Use in Modelling Turbulent Industrial Flows
,”
Int. J. Numer. Methods Fluids
,
9
(
8
), pp.
963
985
.10.1002/fld.1650090806
54.
Launder
,
B. E.
,
1989
, “
Second-Moment Closure: Present…and Future?
,”
Int. J. Heat Fluid Flow
,
10
(
4
), pp.
282
300
.10.1016/0142-727X(89)90017-9
55.
Lien
,
F.-S.
, and
Leschziner
,
M. A.
,
1994
, “
Assessment of Turbulence-Transport Models Including Non-Linear RNG Eddy-Viscosity Formulation and Second-Moment Closure for Flow Over a Backward-Facing Step
,”
Comput. Fluids
,
23
(
8
), pp.
983
1004
.10.1016/0045-7930(94)90001-9
56.
Dietz
,
C. F.
,
Neumann
,
S. O.
, and
Weigand
,
B.
,
2007
, “
A Comparative Study of the Performance of Explicit Algebraic Models for the Turbulent Heat Flux
,”
Numer. Heat Transfer, Part A
,
52
(
2
), pp.
101
126
.10.1080/10407780601115046
57.
Kenjereš
,
S.
,
Gunarjo
,
S. B.
, and
Hanjalić
,
K.
,
2005
, “
Contribution to Elliptic Relaxation Modelling of Turbulent Natural and Mixed Convection
,”
Int. J. Heat Fluid Flow
,
26
(
4
), pp.
569
586
.10.1016/j.ijheatfluidflow.2005.03.007
58.
Amidror
,
I.
,
2002
, “
Scattered Data Interpolation Methods for Electronic Imaging Systems: A Survey
,”
J. Electron. Imaging
,
11
(
2
), pp.
157
176
.10.1117/1.1455013
59.
ANSYS
,
2019
, “ANSYS Fluent, Release 19.0,”
ANSYS
,
Canonsburg, PA
.
60.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
(Series in Computational Methods and Physical Processes in Mechanics and Thermal Sciences), 1st ed.,
CRC Press
,
Boca Raton, FL
, p.
197
.
61.
Rhie
,
C. M.
, and
Chow
,
W. L.
,
1983
, “
Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
,”
AIAA J.
,
21
(
11
), pp.
1525
1532
.10.2514/3.8284
62.
Lemmon
,
E. W.
, and
McLinden
,
M. O.
,
2019
, “
Thermophysical Properties of Fluid Systems
,”
NIST Chemistry WebBook, NIST Standard Reference Database Number 69
,
P. J.
Linstrom
and
W. G.
Mallard
eds.,
NIST
,
Gaithersburg, MD
.
63.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.10.1115/1.2910291
64.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
65.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
, 1st ed.,
Cambridge University Press
,
New York, NY
, p.
767
.
66.
Roy
,
C. J.
, and
Oberkampf
,
W. L.
,
2011
, “
A Comprehensive Framework for Verification, Validation, and Uncertainty Quantification in Scientific Computing
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
25–28
), pp.
2131
2144
.10.1016/j.cma.2011.03.016
67.
Oberkampf
,
W. L.
, and
Barone
,
M. F.
,
2006
, “
Measures of Agreement Between Computational and Experiment: Validation Metrics
,”
J. Comput. Phys.
,
217
(
1
), pp.
5
36
.10.1016/j.jcp.2006.03.037
68.
Ferson
,
S.
,
Oberkampf
,
W. L.
, and
Ginzburg
,
L.
,
2008
, “
Model Validation and Predictive Capability for the Thermal Challenge Problem
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
29–32
), pp.
2408
2430
.10.1016/j.cma.2007.07.030
69.
Mathur
,
A.
, and
He
,
S.
,
2013
, “
Performance and Implementation of the Launder-Sharma Low-Reynolds Number Turbulence Model
,”
Comput. Fluids
,
79
, pp.
134
139
.10.1016/j.compfluid.2013.02.020
70.
Chen
,
H.-C.
, and
Patel
,
V. C.
,
1988
, “
Near-Wall Turbulence Models for Complex Flows Including Separation
,”
AIAA J.
,
26
(
6
), pp.
641
648
.10.2514/3.9948
71.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 7th ed.,
Wiley
,
Hoboken, NJ
, p.
1048
.
72.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
1993
,
Convective Heat and Mass Transfer
(McGraw-Hill Series in Mechanical Engineering), 3rd ed.,
McGraw-Hill
,
New York, NY
, p.
601
.
73.
Yoder
,
D. A.
, and
Georgiadis
,
N. J.
,
1999
, “
Implementation and Validation of the Chien kϵ Turbulence Model in the WIND Navier-Stokes Code
,”
AIAA
Paper No.
AIAA-99-0745.10.2514/6.AIAA-99-0745
You do not currently have access to this content.