Abstract

There is a dearth in the literature on how to capture the uncertainty generated by material surface evolution in thermal modeling. This leads to inadequate or highly variable uncertainty representations for material properties, specifically emissivity when minimal information is available. Inaccurate understandings of prediction uncertainties may lead decision makers to incorrect conclusions, so best engineering practices should be developed for this domain. In order to mitigate the aforementioned issues, this study explores different strategies to better capture the thermal uncertainty response of engineered systems exposed to fire environments via defensible emissivity uncertainty characterizations that can be easily adapted to a variety of use cases. Two unique formulations (one physics-informed and one mathematically based) are presented. The formulations and methodologies presented herein are not exhaustive but more so are a starting point and give the reader a basis for how to customize their uncertainty definitions for differing fire scenarios and materials. Finally, the impact of using this approach versus other commonly used strategies and the usefulness of adding rigor to material surface evolution uncertainty is demonstrated.

References

1.
Roy
,
C. J.
,
2005
, “
Review of Code and Solution Verification Procedures for Computational Simulation
,”
J. Comput. Phys.
,
205
(
1
), pp.
131
156
.10.1016/j.jcp.2004.10.036
2.
Smith
,
R. C.
,
2013
,
Uncertainty Quantification: Theory, Implementation, and Applications
, Vol.
12
,
SIAM
, Philadelphia, PA.
3.
Helton
,
J. C.
,
2011
, “
Quantification of Margins and Uncertainties: Conceptual and Computational Basis
,”
Reliab. Eng. Syst. Saf.
,
96
(
9
), pp.
976
1013
.10.1016/j.ress.2011.03.017
4.
Schroeder
,
B. B.
,
Silva
,
H.
, and
Smith
,
K. D.
,
2018
, “
Separability of Mesh Bias and Parametric Uncertainty for a Full System Thermal Analysis
,”
ASME J. Verif. Valid. Uncert.
,
3
(
3
), p. 031006.10.1115/1.4042815
5.
Helton
,
J. C.
,
Johnson
,
J. D.
, and
Oberkampf
,
W. L.
,
2004
, “
An Exploration of Alternative Approaches to the Representation of Uncertainty in Model Predictions
,”
Reliab. Eng. Syst. Saf.
,
85
(
1–3
), pp.
39
71
.10.1016/j.ress.2004.03.025
6.
Helton
,
J. C.
, and
Johnson
,
J. D.
,
2011
, “
Quantification of Margins and Uncertainties: Alternative Representations of Epistemic Uncertainty
,”
Reliab. Eng. Syst. Saf.
,
96
(
9
), pp.
1034
1052
.10.1016/j.ress.2011.02.013
7.
Adams
,
B.
,
Ebeidad
,
M.
,
Eldred
,
M.
,
Geraci
,
G.
,
Jakeman
,
J.
,
Maupin
,
K.
,
Monschke
,
J.
,
Swiler
,
L.
,
Stephens
,
J.
,
Vigil
,
D.
,
Wildey
,
T.
,
Bohnhoff
,
W.
,
Dalbey
,
K.
,
Eddy
,
J.
,
Hooper
,
R.
,
Hu
,
K.
,
Hough
,
P.
,
Ridgway
,
E.
, and
Rushdi
,
A.
,
2016
, “
Dakota, a Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.5 User's Manual
,”
Sandia National Laboratories
, Albuquerque, NM, Report No.
SAND2014-4633
.https://dakota.sandia.gov/sites/default/files/docs/6.0/Users-6.0.0.pdf
8.
Helton
,
J. C.
, and
Davis
,
F. J.
,
2003
, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
,
81
(
1
), pp.
23
69
.10.1016/S0951-8320(03)00058-9
9.
Tang
,
B.
,
1993
, “
Orthogonal Array-Based Latin Hypercubes
,”
J. Am. Stat. Assoc.
,
88
(
424
), pp.
1392
1397
.10.1080/01621459.1993.10476423
10.
Jones
,
J.
,
Mason
,
P.
, and
Williams
,
A.
,
2019
, “
A Compilation of Data on the Radiant Emissivity of Some Materials at High Temperatures
,”
J. Energy Inst.
,
92
(
3
), pp.
523
534
.10.1016/j.joei.2018.04.006
11.
Shurtz
,
R. C.
,
2018
, “
Total Hemispherical Emissivity of Metals Applicable to Radiant Heat Testing
,”
Sandia National Laboratories
, Albuquerque, NM, Report No.
SAND2018-13271
.https://www.osti.gov/servlets/purl/1483461/
12.
Gembarovic
,
J.
,
2005
, “
Total Hemispherical Emissivity of Thermocouple Sheaths
,” A Report to Sandia National Laboratories, Thermophysical Properties Research Laboratory, West Lafayette, IN.
13.
Brundage
,
A.
,
Donaldson
,
A.
,
Gill
,
W.
,
Kearney
,
S.
,
Nicolette
,
V.
, and
Yilmaz
,
N.
,
2011
, “
Thermocouple Response in Fires—Part 1: Considerations in Flame Temperature Measurements by a Thermocouple
,”
J. Fire Sci.
,
29
(
3
), pp.
195
211
.10.1177/0734904110386187
14.
Touloukian
,
Y.
, and
DeWitt
,
D.
,
1970
, “
Thermal Radiative Properties: Metallic Elements and Alloys
,”
Thermophysical Properties of Matter
, Vol.
7
,
IFI/Plenum, Wast Lafayette, IN
.
15.
Incropera
,
F.
, and
DeWitt
,
D.
,
1996
,
Fundamentals of Heat and Mass Transfer
, 4th ed.,
Wiley
, New York.
You do not currently have access to this content.