Abstract

Image-based simulation plays a pivotal role in diverse engineering applications, integrating both image and numerical variables as inputs to predict design performance, understand system behaviors, and drive discovery. Uncertainty, inherent in these simulations, must be quantified and managed as it arises in numerical variables due to randomness in materials, manufacturing processes, and operations. Similarly, images exhibit uncertainty stemming from the inherent variability of the quantities they represent and the involved image processing. Addressing image uncertainty presents a unique challenge, primarily due to the high dimension and the limited availability of image samples, imposing constraints on conventional uncertainty quantification (UQ) techniques. To overcome this challenge, this study introduces a new concept—uncertainty separation, designed to disentangle the impacts of uncertainties associated with image and numerical inputs, particularly in scenarios with limited image samples. The proposed method decomposes a simulation model into two distinct submodels: one handling image inputs and the other managing numerical inputs. While image samples directly inform the analysis of the image submodel, existing uncertainty quantification approaches are applied to assess the submodels with numerical input. This concept has proven to be efficient, achieving satisfactory accuracy through two practical examples, demonstrating its potential to enhance engineering analysis and design in scenarios involving image and numerical uncertainties.

References

1.
Oden
,
J.
,
Belytschko
,
T.
,
Fish
,
J.
,
Hughes
,
T.
,
Johnson
,
C.
,
Keyes
,
D.
,
Laub
,
A.
,
Petzold
,
L.
,
Srolovitz
,
D.
, and
Yip
,
S.
,
2006
,
Simulation-Based Engineering Science: Revolutionizing Engineering Science Through Simulation
,
NSF Blue Ribbon Panel on SBES
,
Washington, DC
.
2.
Imai
,
Y.
,
Miki
,
T.
,
Nakamura
,
M.
,
Ishikawa
,
T.
,
Wada
,
S.
, and
Yamaguchi
,
T.
,
2007
, “
Image Based Simulation of Pulmonary Airflow Using Multi-Level Voxel Modeling
,” ASME Paper No. SBC2007-176529.10.1115/SBC2007-176529
3.
Kong
,
F.
, and
Shadden
,
S. C.
,
2020
, “
Automating Model Generation for Image-Based Cardiac Flow Simulation
,”
ASME J. Biomech. Eng.
,
142
(
11
), p.
111011
.10.1115/1.4048032
4.
Jiang
,
S.
,
Luo
,
J.
,
Ruiz-Pava
,
G.
,
Hu
,
J.
, and
Magee
,
C. L.
,
2021
, “
Deriving Design Feature Vectors for Patent Images Using Convolutional Neural Networks
,”
ASME J. Mech. Des.
,
143
(
6
), p.
061405
.10.1115/1.4049214
5.
Kazemi
,
H.
,
Seepersad
,
C. C.
, and
Alicia Kim
,
H.
,
2022
, “
Multiphysics Design Optimization Via Generative Adversarial Networks
,”
ASME J. Mech. Des.
,
144
(
12
), p.
121702
.10.1115/1.4055377
6.
Kwok
,
T.-H.
,
2020
, “
Geometry-Based Thick Origami Simulation
,”
ASME J. Mech. Des.
,
143
(
6
), p.
061701
.10.1115/1.4048744
7.
Evans
,
L. M.
,
Sözümert
,
E.
,
Keenan
,
B. E.
,
Wood
,
C. E.
, and
Du Plessis
,
A.
,
2023
, “
A Review of Image-Based Simulation Applications in High-Value Manufacturing
,”
Arch. Comput. Methods Eng.
,
30
(
3
), pp.
1495
1552
.10.1007/s11831-022-09836-2
8.
Khanzadeh
,
M.
,
Dantin
,
M.
,
Tian
,
W.
,
Priddy
,
M. W.
,
Doude
,
H.
, and
Bian
,
L.
,
2021
, “
Fast Prediction of Thermal Data Stream for Direct Laser Deposition Processes Using Network-Based Tensor Regression
,”
ASME J. Manuf. Sci. Eng.
,
144
(
4
), p.
041004
.10.1115/1.4052207
9.
Manyar
,
O. M.
,
Cheng
,
J.
,
Levine
,
R.
,
Krishnan
,
V.
,
Barbič
,
J.
, and
Gupta
,
S. K.
,
2022
, “
Physics Informed Synthetic Image Generation for Deep Learning-Based Detection of Wrinkles and Folds
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
3
), p.
030903
.10.1115/1.4056295
10.
Sinha
,
V.
,
Strantz
,
F. A.
, and
Lee
,
H. K.
,
2023
, “
A Novel Algorithm for Fast Measurement of Material Density in Symmetrical Objects Using X-Ray Radiography
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
9
(
3
), p.
032005
.10.1115/1.4056972
11.
Hoi
,
Y.
,
Woodward
,
S. H.
,
Kim
,
M.
,
Taulbee
,
D. B.
, and
Meng
,
H.
,
2006
, “
Validation of CFD Simulations of Cerebral Aneurysms With Implication of Geometric Variations
,”
ASME J. Biomech. Eng.
,
128
(
6
), pp.
844
851
.10.1115/1.2354209
12.
Farsad
,
M.
,
Zeinali-Davarani
,
S.
,
Choi
,
J.
, and
Baek
,
S.
,
2015
, “
Computational Growth and Remodeling of Abdominal Aortic Aneurysms Constrained by the Spine
,”
ASME J. Biomech. Eng.
,
137
(
9
), p.
091008
.10.1115/1.4031019
13.
Liu
,
H.
,
Simonian
,
N. T.
,
Pouch
,
A. M.
,
Iaizzo
,
P. A.
,
Gorman
,
J. H.
, III
,
Gorman
,
R. C.
, and
Sacks
,
M. S.
,
2023
, “
A Computational Pipeline for Patient-Specific Prediction of the Postoperative Mitral Valve Functional State
,”
ASME J. Biomech. Eng.
,
145
(
11
), p.
111002
.10.1115/1.4062849
14.
LeBrun
,
A.
,
Joglekar
,
T.
,
Bieberich
,
C.
,
Ma
,
R.
, and
Zhu
,
L.
,
2017
, “
Treatment Efficacy for Validating MicroCT-Based Theoretical Simulation Approach in Magnetic Nanoparticle Hyperthermia for Cancer Treatment
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
5
), p.
051101
.10.1115/1.4035246
15.
Horner
,
M.
,
Luke
,
S. M.
,
Genc
,
K. O.
,
Pietila
,
T. M.
,
Cotton
,
R. T.
,
Ache
,
B. A.
,
Levine
,
Z. H.
, and
Townsend
,
K. C.
,
2019
, “
Toward Estimating the Uncertainty Associated With Three-Dimensional Geometry Reconstructed From Medical Image Data
,”
ASME J. Verif., Validation, Uncertainty Quantif.
,
4
(
4
), p.
041002
.10.1115/1.4045487
16.
Movahhedi
,
M.
,
Liu
,
X.-Y.
,
Geng
,
B.
,
Elemans
,
C.
,
Xue
,
Q.
,
Wang
,
J.-X.
, and
Zheng
,
X.
,
2023
, “
Predicting 3D Soft Tissue Dynamics From 2D Imaging Using Physics Informed Neural Networks
,”
Commun. Biol.
,
6
(
1
), p.
541
.10.1038/s42003-023-04914-y
17.
Bultreys
,
T.
,
De Boever
,
W.
, and
Cnudde
,
V.
,
2016
, “
Imaging and Image-Based Fluid Transport Modeling at the Pore Scale in Geological Materials: A Practical Introduction to the Current State-of-the-Art
,”
Earth-Sci. Rev.
,
155
, pp.
93
128
.10.1016/j.earscirev.2016.02.001
18.
Li
,
T.
,
Guo
,
H.
,
Zhang
,
L.
,
Nie
,
C.
,
Liao
,
J.
, and
Liu
,
G.
,
2020
, “
Simulation of Moon-Based Earth Observation Optical Image Processing Methods for Global Change Study
,”
Front. Earth Sci.
,
14
(
1
), pp.
236
250
.10.1007/s11707-019-0749-9
19.
Wu
,
H.
,
Hu
,
Z.
, and
Du
,
X.
,
2020
, “
Time-Dependent System Reliability Analysis With Second-Order Reliability Method
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031101
.10.1115/1.4048732
20.
Drignei
,
D.
, and
Mourelatos
,
Z. P.
,
2012
, “
Parameter Screening in Statistical Dynamic Computer Model Calibration Using Global Sensitivities
,”
ASME J. Mech. Des.
,
134
(
8
), p.
081001
.10.1115/1.4006874
21.
Wang
,
P.
,
Hu
,
C.
, and
Youn
,
B. D.
,
2011
, “
A Generalized Complementary Intersection Method (GCIM) for System Reliability Analysis
,”
ASME J. Mech. Des.
,
133
(
7
), p.
071003
.10.1115/1.4004198
22.
Ren
,
L.
, and
Xi
,
Z.
,
2022
, “
Bias-Learning-Based Model Predictive Controller Design for Reliable Path Tracking of Autonomous Vehicles Under Model and Environmental Uncertainty
,”
ASME J. Mech. Des.
,
144
(
9
), p.
091706
.10.1115/1.4054674
23.
Hazra
,
I.
,
Chatterjee
,
A.
,
Southgate
,
J.
,
Weiner
,
M. J.
,
Groth
,
K. M.
, and
Azarm
,
S.
,
2024
, “
A Reliability-Based Optimization Framework for Planning Operational Profiles for Unmanned Systems
,”
ASME J. Mech. Des.
,
146
(
5
), p.
051704
.10.1115/1.4063661
24.
Ahmad
,
R.
, and
Kamaruddin
,
S.
,
2012
, “
An Overview of Time-Based and Condition-Based Maintenance in Industrial Application
,”
Comput. Ind. Eng.
,
63
(
1
), pp.
135
149
.10.1016/j.cie.2012.02.002
25.
Xi
,
Z.
,
2019
, “
Model-Based Reliability Analysis With Both Model Uncertainty and Parameter Uncertainty
,”
ASME J. Mech. Des.
,
141
(
5
), p.
051404
.10.1115/1.4041946
26.
Liu
,
Y.
,
Jiang
,
C.
,
Zhang
,
X.
,
Mourelatos
,
Z. P.
,
Barthlow
,
D.
,
Gorsich
,
D.
,
Singh
,
A.
, and
Hu
,
Z.
,
2022
, “
Reliability-Based Multivehicle Path Planning Under Uncertainty Using a Bio-Inspired Approach
,”
ASME J. Mech. Des.
,
144
(
9
), p.
091701
.10.1115/1.4053217
27.
Xu
,
H.
,
2020
, “
Constructing Oscillating Function-Based Covariance Matrix to Allow Negative Correlations in Gaussian Random Field Models for Uncertainty Quantification
,”
ASME J. Mech. Des.
,
142
(
7
), p.
074501
.10.1115/1.4046067
28.
Jiang
,
Z.
,
Li
,
W.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2015
, “
A Spatial-Random-Process Based Multidisciplinary System Uncertainty Propagation Approach With Model Uncertainty
,”
ASME J. Mech. Des.
,
137
(
10
), p.
101402
.10.1115/1.4031096
29.
Bengio
,
Y.
,
Courville
,
A.
, and
Vincent
,
P.
,
2013
, “
Representation Learning: A Review and New Perspectives
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
35
(
8
), pp.
1798
1828
.10.1109/TPAMI.2013.50
30.
Schmidhuber
,
J.
,
2015
, “
Deep Learning in Neural Networks: An Overview
,”
Neural Networks
,
61
, pp.
85
117
.10.1016/j.neunet.2014.09.003
31.
LeCun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
.10.1038/nature14539
32.
Panchal
,
J. H.
,
Fuge
,
M.
,
Liu
,
Y.
,
Missoum
,
S.
, and
Tucker
,
C.
,
2019
, “
Special Issue: Machine Learning for Engineering Design
,”
ASME J. Mech. Des.
,
141
(
11
), p.
110301
.10.1115/1.4044690
33.
Gadd
,
C.
,
Xing
,
W.
,
Nezhad
,
M. M.
, and
Shah
,
A.
,
2019
, “
A Surrogate Modelling Approach Based on Nonlinear Dimension Reduction for Uncertainty Quantification in Groundwater Flow Models
,”
Transp. Porous Media
,
126
(
1
), pp.
39
77
.10.1007/s11242-018-1065-7
34.
Du
,
X.
,
Leifsson
,
L.
,
Meeker
,
W.
,
Gurrala
,
P.
,
Song
,
J.
, and
Roberts
,
R.
,
2019
, “
Efficient Model-Assisted Probability of Detection and Sensitivity Analysis for Ultrasonic Testing Simulations Using Stochastic Metamodeling
,”
ASME J. Nondestr. Eval., Diagn. Progn. Eng. Syst.
,
2
(
4
), p.
041002
.10.1115/1.4044446
35.
Zhang
,
Y.
,
Kim
,
N. H.
, and
Haftka
,
R. T.
,
2019
, “
General Surrogate Adaptive Sampling Using Interquartile Range for Design Space Exploration
,”
AIAA
Paper No. 2019-2213.10.2514/6.2019-2213
36.
Deshmukh
,
A. P.
, and
Allison
,
J. T.
,
2017
, “
Design of Dynamic Systems Using Surrogate Models of Derivative Functions
,”
ASME J. Mech. Des.
,
139
(
10
), p.
101402
.10.1115/1.4037407
37.
Qian
,
Z.
,
Seepersad
,
C. C.
,
Joseph
,
V. R.
,
Allen
,
J. K.
, and
Jeff Wu
,
C. F.
,
2005
, “
Building Surrogate Models Based on Detailed and Approximate Simulations
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
668
677
.10.1115/1.2179459
38.
Huang
,
X.
,
Xie
,
T.
,
Wang
,
Z.
,
Chen
,
L.
,
Zhou
,
Q.
, and
Hu
,
Z.
,
2021
, “
A Transfer Learning-Based Multi-Fidelity Point-Cloud Neural Network Approach for Melt Pool Modeling in Additive Manufacturing
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B: Mech. Eng.
,
8
(
1
), p.
011104
.10.1115/1.4051749
39.
Liu
,
D.
,
Pusarla
,
P.
, and
Wang
,
Y.
,
2022
, “
Multifidelity Physics-Constrained Neural Networks With Minimax Architecture
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
3
), p.
031008
.10.1115/1.4055316
40.
Makkar
,
G.
,
Smith
,
C.
,
Drakoulas
,
G.
,
Kopsaftopoulos
,
F.
, and
Gandhi
,
F.
,
2022
, “
A Machine Learning Framework for Physics-Based Multi-Fidelity Modeling and Health Monitoring for a Composite Wing
,” ASME Paper No. IMECE2022-94850.10.1115/IMECE2022-94850
41.
Fuchi
,
K.
,
Wolf
,
E. M.
,
Makhija
,
D. S.
,
Wukie
,
N. A.
,
Schrock
,
C. R.
, and
Beran
,
P. S.
,
2019
, “
Design-Oriented Multifidelity Fluid Simulation Using Machine Learned Fidelity Mapping
,” ASME Paper No. SMASIS2019-5515.10.1115/SMASIS2019-5515
42.
Deng
,
S.
,
Mora
,
C.
,
Apelian
,
D.
, and
Bostanabad
,
R.
,
2022
, “
Data-Driven Calibration of Multifidelity Multiscale Fracture Models Via Latent Map Gaussian Process
,”
ASME J. Mech. Des.
,
145
(
1
), p.
011705
.10.1115/1.4055951
43.
Peherstorfer
,
B.
,
Willcox
,
K.
, and
Gunzburger
,
M.
,
2018
, “
Survey of Multifidelity Methods in Uncertainty Propagation, Inference, and Optimization
,”
SIAM Rev.
,
60
(
3
), pp.
550
591
.10.1137/16M1082469
44.
Hu
,
Z.
, and
Du
,
X.
,
2018
, “
Integration of Statistics-and Physics-Based Methods—A Feasibility Study on Accurate System Reliability Prediction
,”
ASME J. Mech. Des.
,
140
(
7
), p.
074501
.10.1115/1.4039770
45.
Stern
,
R. E.
,
Song
,
J.
, and
Work
,
D. B.
,
2017
, “
Accelerated Monte Carlo System Reliability Analysis Through Machine-Learning-Based Surrogate Models of Network Connectivity
,”
Reliab. Eng. Syst. Saf.
,
164
, pp.
1
9
.10.1016/j.ress.2017.01.021
46.
Zhao
,
W. L.
,
Gentine
,
P.
,
Reichstein
,
M.
,
Zhang
,
Y.
,
Zhou
,
S.
,
Wen
,
Y.
,
Lin
,
C.
,
Li
,
X.
, and
Qiu
,
G. Y.
,
2019
, “
Physics‐Constrained Machine Learning of Evapotranspiration
,”
Geophys. Res. Lett.
,
46
(
24
), pp.
14496
14507
.10.1029/2019GL085291
47.
Liu
,
D.
, and
Wang
,
Y.
,
2019
, “
Multi-Fidelity Physics-Constrained Neural Network and Its Application in Materials Modeling
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121403
.10.1115/1.4044400
48.
Chen
,
Y.
, and
Zhang
,
D.
,
2020
, “
Physics-Constrained Deep Learning of Geomechanical Logs
,”
IEEE Trans. Geosci. Remote Sens.
,
58
(
8
), pp.
5932
5943
.10.1109/TGRS.2020.2973171
49.
Wang
,
Z.
,
Xing
,
W.
,
Kirby
,
R.
, and
Zhe
,
S.
,
2020
, “
Physics Regularized Gaussian Processes
,” preprint arXiv:2006.04976.
50.
Szajewska
,
A.
,
2017
, “
Development of the Thermal Imaging Camera (TIC) Technology
,”
Procedia Eng.
,
172
, pp.
1067
1072
.10.1016/j.proeng.2017.02.164
51.
Du
,
X.
,
2024
, “
Accounting for Machine Learning Prediction Errors in Design
,”
ASME J. Mech. Des.
,
146
(
5
), p.
051709
.10.1115/1.4064278
52.
Yang
,
Y.
,
Guo
,
X.
,
Pan
,
Y.
,
Shi
,
P.
,
Lv
,
H.
, and
Ma
,
T.
,
2021
, “
Uncertainty Quantification in Medical Image Segmentation With Multi-Decoder U-Net
,”
Proceedings of the Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
,
A.
Crimi
, and
S.
Bakas
, eds.,
Springer International Publishing
, pp.
570
577
.
53.
Kurz
,
A.
,
Hauser
,
K.
,
Mehrtens
,
H. A.
,
Krieghoff-Henning
,
E.
,
Hekler
,
A.
,
Kather
,
J. N.
,
Fröhling
,
S.
,
von Kalle
,
C.
, and
Brinker
,
T. J.
,
2022
, “
Uncertainty Estimation in Medical Image Classification: Systematic Review
,”
JMIR Med. Inf.
,
10
(
8
), p.
e36427
.10.2196/36427
54.
Zou
,
K.
,
Chen
,
Z.
,
Yuan
,
X.
,
Shen
,
X.
,
Wang
,
M.
, and
Fu
,
H.
,
2023
, “
A Review of Uncertainty Estimation and Its Application in Medical Imaging
,”
Meta-Radiology
,
1
(
1
), p.
100003
.10.1016/j.metrad.2023.100003
55.
Krygier
,
M. C.
,
LaBonte
,
T.
,
Martinez
,
C.
,
Norris
,
C.
,
Sharma
,
K.
,
Collins
,
L. N.
,
Mukherjee
,
P. P.
, and
Roberts
,
S. A.
,
2021
, “
Quantifying the Unknown Impact of Segmentation Uncertainty on Image-Based Simulations
,”
Nat. Commun.
,
12
(
1
), p.
5414
.10.1038/s41467-021-25493-8
56.
Kim
,
N.
,
Yang
,
C.
,
Lee
,
H.
, and
Aluru
,
N. R.
,
2019
, “
Spatial Uncertainty Modeling for Surface Roughness of Additively Manufactured Microstructures Via Image Segmentation
,”
Appl. Sci.
,
9
(
6
), p.
1093
.10.3390/app9061093
57.
Sankaran
,
S.
,
Grady
,
L.
, and
Taylor
,
C. A.
,
2015
, “
Impact of Geometric Uncertainty on Hemodynamic Simulations Using Machine Learning
,”
Comput. Methods Appl. Mech. Eng.
,
297
, pp.
167
190
.10.1016/j.cma.2015.08.014
58.
Du
,
P.
, and
Wang
,
J.-X.
,
2022
, “
Reducing Geometric Uncertainty in Computational Hemodynamics by Deep Learning-Assisted Parallel-Chain MCMC
,”
ASME J. Biomech. Eng.
,
144
(
12
), p.
121009
.10.1115/1.4055809
59.
Sankaran
,
S.
, and
Marsden
,
A. L.
,
2010
, “
The Impact of Uncertainty on Shape Optimization of Idealized Bypass Graft Models in Unsteady Flow
,”
Phys. Fluids
,
22
(
12
), p.
121902
.10.1063/1.3529444
60.
Sankaran
,
S.
, and
Marsden
,
A. L.
,
2011
, “
A Stochastic Collocation Method for Uncertainty Quantification and Propagation in Cardiovascular Simulations
,”
ASME J. Biomech. Eng.
,
133
(
3
), p.
031001
.10.1115/1.4003259
61.
Liu
,
W.-C.
,
Huang
,
W.-C.
, and
Young
,
C.-C.
,
2022
, “
Uncertainty Analysis for Image-Based Streamflow Measurement: The Influence of Ground Control Points
,”
Water
,
15
(
1
), p.
123
.10.3390/w15010123
62.
Schweitzer
,
S. A.
, and
Cowen
,
E. A.
,
2022
, “
A Method for Analysis of Spatial Uncertainty in Image Based Surface Velocimetry
,”
Front. Water
,
4
, p.
744278
.10.3389/frwa.2022.744278
63.
Santo
,
M. D.
,
Liguori
,
C.
,
Paolillo
,
A.
, and
Pietrosanto
,
A.
,
2004
, “
Standard Uncertainty Evaluation in Image-Based Measurements
,”
Measurement
,
36
(
3–4
), pp.
347
358
.10.1016/j.measurement.2004.09.011
64.
Leo
,
G. D.
,
Liguori
,
C.
,
Pietrosanto
,
A.
, and
Lengu
,
R.
,
2017
, “
Uncertainty of Line Camera Image Based Measurements
,”
IEEE International Instrumentation and Measurement Technology Conference (I2MTC)
, Turin, Italy, May 22–25, pp.
1
6
.10.1109/I2MTC.2017.7969698
65.
Chen
,
W.
,
Lee
,
D.
,
Balogun
,
O.
, and
Chen
,
W.
,
2022
, “
GAN-DUF: Hierarchical Deep Generative Models for Design Under Free-Form Geometric Uncertainty
,”
ASME J. Mech. Des.
,
145
(
1
), p.
011703
.10.1115/1.4055898
66.
Chen
,
S.
, and
Chen
,
W.
,
2011
, “
A New Level-Set Based Approach to Shape and Topology Optimization Under Geometric Uncertainty
,”
Struct. Multidiscip. Optim.
,
44
(
1
), pp.
1
18
.10.1007/s00158-011-0660-9
67.
Maute
,
K.
,
2014
, “
Topology Optimization Under Uncertainty
,”
Topology Optimization in Structural and Continuum Mechanics
,
G. I. N.
Rozvany
, and
T.
Lewiński
, eds.,
Springer
,
Vienna, Austria
, pp.
457
471
.
68.
Kendall
,
D. G.
,
1989
, “
A Survey of the Statistical Theory of Shape
,”
Stat. Sci.
,
4
(
2
), pp.
87
99
.10.1214/ss/1177012582
69.
Liang
,
L.
,
Liu
,
M.
,
Martin
,
C.
,
Elefteriades
,
J. A.
, and
Sun
,
W.
,
2017
, “
A Machine Learning Approach to Investigate the Relationship Between Shape Features and Numerically Predicted Risk of Ascending Aortic Aneurysm
,”
Biomech. Model. Mechanobiol.
,
16
(
5
), pp.
1519
1533
.10.1007/s10237-017-0903-9
70.
Sobol′
,
I. M.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
(
1–3
), pp.
271
280
.10.1016/S0378-4754(00)00270-6
71.
Wu
,
H.
, and
Du
,
X.
,
2023
, “
Time- and Space-Dependent Reliability-Based Design With Envelope Method
,”
ASME J. Mech. Des.
,
145
(
3
), p.
031708
.10.1115/1.4056599
72.
Wong
,
F. S.
,
1985
, “
First-Order, Second-Moment Methods
,”
Comput. Struct.
,
20
(
4
), pp.
779
791
.10.1016/0045-7949(85)90039-2
73.
Du
,
X.
,
Chen
,
W.
, and
Wang
,
Y.
,
2010
, “
Most Probable Point-Based Methods
,”
Extreme Statistics in Nanoscale Memory Design
,
A.
Singhee
, and
R. A.
Rutenbar
, eds.,
Springer US
,
Boston, MA
, pp.
179
202
.
74.
Hu
,
Z.
,
Mansour
,
R.
,
Olsson
,
M.
, and
Du
,
X.
,
2021
, “
Second-Order Reliability Methods: A Review and Comparative Study
,”
Struct. Multidiscip. Optim.
,
64
(
6
), pp.
3233
3263
.10.1007/s00158-021-03013-y
75.
Soize
,
C.
, and
Ghanem
,
R.
,
2004
, “
Physical Systems With Random Uncertainties: Chaos Representations With Arbitrary Probability Measure
,”
SIAM J. Sci. Comput.
,
26
(
2
), pp.
395
410
.10.1137/S1064827503424505
76.
Wu
,
H.
, and
Du
,
X.
,
2020
, “
System Reliability Analysis With Second-Order Saddlepoint Approximation
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B: Mech. Eng.
,
6
(
4
), p.
041001
.10.1115/1.4047217
77.
Hu
,
Z.
, and
Du
,
X.
,
2018
, “
Saddlepoint Approximation Reliability Method for Quadratic Functions in Normal Variables
,”
Struct. Saf.
,
71
, pp.
24
32
.10.1016/j.strusafe.2017.11.001
78.
Du
,
X.
,
2010
, “
System Reliability Analysis With Saddlepoint Approximation
,”
Struct. Multidiscip. Optim.
,
42
(
2
), pp.
193
208
.10.1007/s00158-009-0478-x
79.
Huang
,
B.
, and
Du
,
X.
,
2008
, “
Probabilistic Uncertainty Analysis by Mean-Value First Order Saddlepoint Approximation
,”
Reliab. Eng. Syst. Saf.
,
93
(
2
), pp.
325
336
.10.1016/j.ress.2006.10.021
80.
Du
,
X.
,
2007
, “
Saddlepoint Approximation for Sequential Optimization and Reliability Analysis
,”
ASME J. Mech. Des.
,
130
(
1
), p.
011011
.10.1115/1.2717225
81.
Cremers
,
D.
,
Osher
,
S. J.
, and
Soatto
,
S.
,
2004
, “
Kernel Density Estimation and Intrinsic Alignment for Knowledge-Driven Segmentation: Teaching Level Sets to Walk
,”
Proceeding of the Pattern Recognition
,
C. E.
Rasmussen
,
H. H.
Bülthoff
,
B.
Schölkopf
, and
M. A.
Giese
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
36
44
.
82.
Charpiat
,
G.
,
Faugeras
,
O.
, and
Keriven
,
R.
,
2005
, “
Approximations of Shape Metrics and Application to Shape Warping and Empirical Shape Statistics
,”
Found. Comput. Math.
,
5
(
1
), pp.
1
58
.10.1007/s10208-003-0094-x
83.
Goodall
,
C.
,
1991
, “
Procrustes Methods in the Statistical Analysis of Shape
,”
J. R. Stat. Soc.: Ser. B (Methodol.)
,
53
(
2
), pp.
285
321
.10.1111/j.2517-6161.1991.tb01825.x
84.
Yin
,
J.
, and
Du
,
X.
,
2022
, “
Uncertainty Quantification by Convolutional Neural Network Gaussian Process Regression With Image and Numerical Data
,” AIAA Paper No. 2022-1100.10.2514/6.2022-1100
You do not currently have access to this content.