Abstract

In the use of statistical models to analyze data, there is not only the uncertainty quantified by the models but also uncertainty about which models are adequate for some purpose, such as weighing the evidence for or against a hypothesis of scientific interest. This paper provides methods for propagating such unquantified uncertainty to the results under a unified framework of adequate model averaging. Specifically, the weight of each model used in the average is the probability that it is the most useful model. To allow for the case that none of the models considered would be useful, a catch-all model is included in the model average at a different level of the hierarchy. The catch-all model is the vacuous model in imprecise probability theory, the model that puts no restrictions on the probabilities of statements about the unknown values of interest. That enables defining the proportion of the uncertainty left unquantified by a model as the probability that it is inadequate in the sense of being less useful than the catch-all model. A lower bound for the proportion of unquantified uncertainty of the averaged model decreases as more models are added to the average.

References

1.
Cox
,
D. R.
,
2001
, “
Comment on ‘Statistical Modeling: The Two Cultures’
,”
Stat. Sci.
,
16
, pp.
216
218
.
2.
Breiman
,
B.
,
2001
, “
Statistical Modeling: The Two Cultures (With Comments and a Rejoinder)
,”
Stat. Sci.
,
16
(
3
), pp.
199
231
.
3.
Cox
,
D. R.
,
1975
, “
Prediction Intervals and Empirical Bayes Confidence Intervals
,”
J. Appl. Probab.
,
12
(
S1
), pp.
47
55
.10.1017/S0021900200047550
4.
Shen
,
J.
,
Liu
,
R. Y.
, and
Xie
,
M.
,
2018
, “
Prediction With Confidence—A General Framework for Predictive Inference
,”
J. Stat. Plann. Inference
,
195
, pp.
126
140
.10.1016/j.jspi.2017.09.012
5.
Tian
,
Q.
,
Nordman
,
D. J.
, and
Meeker
,
W. Q.
,
2022
, “
Methods to Compute Prediction Intervals: A Review and New Results
,”
Stat. Sci.
,
37
(
4
), pp.
580
597
.
6.
Vovk
,
V.
,
2022
, “
Universal Predictive Systems
,”
Pattern Recognit.
,
126
, p.
108536
.10.1016/j.patcog.2022.108536
7.
Xie
,
M.
, and
Zheng
,
Z.
,
2022
, “
Homeostasis Phenomenon in Conformal Prediction and Predictive Distribution Functions
,”
Int. J. Approximate Reasoning
,
141
, pp.
131
145
.10.1016/j.ijar.2021.09.001
8.
Bickel
,
D. R.
,
2022
, “
Confidence Distributions and Empirical Bayes Posterior Distributions Unified as Distributions of Evidential Support
,”
Commun. Stat. - Theory Methods
,
51
(
10
), pp.
3142
3163
.10.1080/03610926.2020.1790004
9.
Evans
,
M.
, and
Jang
,
G.
,
2011
, “
A Limit Result for the Prior Predictive Applied to Checking for Prior-Data Conflict
,”
Stat. Probab. Lett.
,
81
(
8
), pp.
1034
1038
.10.1016/j.spl.2011.02.025
10.
García-Donato
,
G.
, and
Chen
,
M. H.
,
2005
, “
Calibrating Bayes Factor Under Prior Predictive Distributions
,”
Stat. Sin.
,
15
(
2
), pp.
359
380
.https://www.jstor.org/stable/24307360
11.
Kruschke
,
J.
,
2013
, “
Posterior Predictive Checks Can and Should Be Bayesian: Comment on Gelman and Shalizi, ‘Philosophy and the Practice of Bayesian Statistics’
,”
Br. J. Math. Stat. Psychol.
,
66
(
1
), pp.
45
56
.10.1111/j.2044-8317.2012.02063.x
12.
Lau
,
M. S. Y.
,
Marion
,
G.
,
Streftaris
,
G.
, and
Gibson
,
G. J.
,
2014
, “
New Model Diagnostics for Spatio-Temporal Systems in Epidemiology and Ecology
,”
J. R. Soc. Interface
,
11
(
93
), p.
20131093
.10.1098/rsif.2013.1093
13.
Davies
,
P. L.
,
2014
,
Data Analysis and Approximate Models: Model Choice, Location-Scale, Analysis of Variance, Nonparametric Regression and Image Analysis
,
CRC Press
,
New York
.
14.
Cerquides
,
J.
, and
de Mántaras
,
R. L.
,
2005
, “
Robust Bayesian Linear Classifier Ensembles
,”
Machine Learning: ECML 2005
,
J.
Gama
,
R.
Camacho
,
P. B.
Brazdil
,
A. M.
Jorge
, and
L.
Torgo
, eds.,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
, Germany, pp.
72
83
.
15.
Le
,
T.
, and
Clarke
,
B.
,
2017
, “
A Bayes Interpretation of Stacking for M-Complete and M-Open Settings
,”
Bayesian Anal.
,
12
(
3
), pp.
807
829
.10.48550/arXiv.1602.05162
16.
Yao
,
Y.
,
Vehtari
,
A.
,
Simpson
,
D.
, and
Gelman
,
A.
,
2018
, “
Using Stacking to Average Bayesian Predictive Distributions (With Discussion)
,”
Bayesian Anal.
,
13
(
3
), pp.
917
1007
.http://www.stat.columbia.edu/~gelman/research/published/stacking_paper_discussion_rejoinder.pdf
17.
Schweder
,
T.
,
2018
, “
Confidence Is Epistemic Probability for Empirical Science
,”
J. Stat. Plann. Inference
,
195
, pp.
116
125
.10.1016/j.jspi.2017.09.016
18.
Morey
,
R. D.
,
Hoekstra
,
R.
,
Rouder
,
J. N.
,
Lee
,
M. D.
, and
Wagenmakers
,
E. J.
,
2016
, “
The Fallacy of Placing Confidence in Confidence Intervals
,”
Psychon. Bull. Rev.
,
23
(
1
), pp.
103
123
.10.3758/s13423-015-0947-8
19.
Alonso-Martín
,
P. R.
,
Montes
,
I.
, and
Miranda
,
E.
,
2023
, “
Distortion Models for Estimating Human Error Probabilities
,”
Saf. Sci.
,
157
, p.
105915
.10.1016/j.ssci.2022.105915
20.
Augustin
,
T.
,
Coolen
,
F.
,
de Cooman
,
G.
,
Troffaes
,
M.
, eds.,
2014
,
Introduction to Imprecise Probabilities
(Wiley Series in Probability and Statistics),
Wiley
, New York.
21.
Walley
,
P.
,
1991
,
Statistical Reasoning With Imprecise Probabilities
,
Chapman and Hall
,
London
.
22.
Troffaes
,
M.
, and
de Cooman
,
G.
,
2014
,
Lower Previsions
(Wiley Series in Probability and Statistics),
Wiley
,
New York
.
23.
Bickel
,
D. R.
,
2022
,
Phylogenetic Trees and Molecular Evolution: A Hands-On Introduction With Uncertainty Quantification Corrected
,
Springer
,
New York
.
24.
Bayati Eshkaftaki
,
A.
, and
Parsian
,
A.
,
2011
, “
Robust Bayes Estimation
,”
Commun. Stat. - Theory Methods
,
40
(
5
), pp.
929
941
.10.1080/03610920903506553
25.
Corani
,
G.
, and
Mignatti
,
A.
,
2015
, “
Robust Bayesian Model Averaging for the Analysis of Presence-Absence Data
,”
Environ. Ecol. Stat.
,
22
(
3
), pp.
513
534
.10.1007/s10651-014-0308-1
26.
Jozani
,
M.
,
Marchand
,
É.
, and
Parsian
,
A.
,
2012
, “
Bayesian and Robust Bayesian Analysis Under a General Class of Balanced Loss Function
,”
Stat. Pap.
,
53
(
1
), pp.
51
60
.10.1007/s00362-010-0307-8
27.
Kiapour
,
A.
, and
Nematollahi
,
N.
,
2011
, “
Robust Bayesian Prediction and Estimation Under a Squared Log Error Loss Function
,”
Stat. Probab. Lett.
,
81
(
11
), pp.
1717
1724
.10.1016/j.spl.2011.07.002
28.
Bausell
,
R. B.
,
2021
,
The Problem With Science: The Reproducibility Crisis and What To Do About It
,
Oxford University Press
,
Oxford, UK
.
29.
Hughes
,
B.
,
2018
,
Psychology in Crisis
,
Palgrave
,
London
.
30.
Hutson
,
M.
,
2018
, “
Artificial Intelligence Faces Reproducibility Crisis
,”
Science
,
359
(
6377
), pp.
725
726
.10.1126/science.359.6377.725
31.
Seibold
,
H.
,
Charlton
,
A.
,
Boulesteix
,
A. L.
, and
Hoffmann
,
S.
,
2021
, “
Statisticians, Roll Up Your Sleeves! There's a Crisis To Be Solved
,”
Significance
,
18
(
4
), pp.
42
44
.10.1111/1740-9713.01554
32.
Bickel
,
D. R.
,
2023
, “
Propagating Uncertainty About Molecular Evolution Models and Prior Distributions to Phylogenetic Trees
,”
Mol. Phylogenet. Evol.
,
180
, p.
107689
.10.1016/j.ympev.2022.107689
33.
Bityukov
,
S.
,
Krasnikov
,
N.
,
Nadarajah
,
S.
, and
Smirnova
,
V.
,
2011
, “
Confidence Distributions in Statistical Inference
,”
AIP Conf. Proc.
,
1305
, pp.
346
353
.10.1063/1.3573637
34.
Nadarajah
,
S.
,
Bityukov
,
S.
, and
Krasnikov
,
N.
,
2015
, “
Confidence Distributions: A Review
,”
Stat. Methodol.
,
22
, pp.
23
46
.10.1016/j.stamet.2014.07.002
35.
Schweder
,
T.
, and
Hjort
,
N.
,
2016
,
Confidence, Likelihood, Probability: Statistical Inference With Confidence Distributions
(Cambridge Series in Statistical and Probabilistic Mathematics),
Cambridge University Press
,
Cambridge, UK
.
36.
Singh
,
K.
,
Xie
,
M.
, and
Strawderman
,
W. E.
,
2007
, “
Confidence Distribution (CD)—Distribution Estimator of a Parameter
,”
IMS Lect. Notes Monogr. Ser.
,
54
, pp.
132
150
.10.1214/074921707000000102
37.
Xie
,
M. G.
, and
Singh
,
K.
,
2013
, “
Confidence Distribution, the Frequentist Distribution Estimator of a Parameter: A Review
,”
Int. Stat. Rev.
,
81
(
1
), pp.
3
39
.10.1111/insr.12000
38.
Troffaes
,
M. C. M.
,
2007
, “
Decision Making Under Uncertainty Using Imprecise Probabilities
,”
Int. J. Approximate Reasoning
,
45
(
1
), pp.
17
29
.10.1016/j.ijar.2006.06.001
39.
Wasserstein
,
R. L.
, and
Lazar
,
N. A.
,
2016
, “
The ASA's Statement on p-Values: Context, Process, and Purpose
,”
Am. Stat.
,
70
(
2
), pp.
129
133
.10.1080/00031305.2016.1154108
40.
Berger
,
J. O.
, and
Sellke
,
T.
,
1987
, “
Testing a Point Null Hypothesis: The Irreconcilability of p Values and Evidence
,”
J. Am. Stat. Assoc.
,
82
(
397
), pp.
112
122
.10.2307/2289131
41.
Sellke
,
T.
,
Bayarri
,
M. J.
, and
Berger
,
J. O.
,
2001
, “
Calibration of p Values for Testing Precise Null Hypotheses
,”
Am. Stat.
,
55
(
1
), pp.
62
71
.10.1198/000313001300339950
42.
Bickel
,
D. R.
,
2024
, “
The p-Value Interpreted as the Posterior Probability of Explaining the Data: Applications to Multiple Testing and to Restricted Parameter Spaces
,”
Sankhya A
,
86
(
1
), pp.
464
493
.10.1007/s13171-023-00328-4
43.
Benjamin
,
D. J.
,
Berger
,
J. O.
,
Johannesson
,
M.
,
Nosek
,
B. A.
,
Wagenmakers
,
E. J.
,
Berk
,
R.
,
Bollen
,
K. A.
, et al.,
2018
, “
Redefine Statistical Significance
,”
Nat. Hum. Behav.
,
2
(
1
), pp.
6
10
.10.1038/s41562-017-0189-z
44.
Bickel
,
D. R.
,
2023
, “
Fiducialize Statistical Significance: Transforming p-Values Into Conservative Posterior Probabilities and Bayes Factors
,”
Statistics
,
57
(
4
), pp.
941
959
.10.1080/02331888.2023.2232912
45.
Bickel
,
D. R.
,
2020
, “
Confidence Intervals, Significance Values, Maximum Likelihood Estimates, etc. Sharpened Into Occam's Razors
,”
Commun. Stat. - Theory Methods
,
49
(
11
), pp.
2703
2712
.10.1080/03610926.2019.1580739
46.
Bernardo
,
J. M.
, and
Smith
,
A. F. M.
,
1994
,
Bayesian Theory
,
Wiley
,
New York
.
47.
Shaked
,
M.
,
1982
, “
A General Theory of Some Positive Dependence Notions
,”
J. Multivar. Anal.
,
12
(
2
), pp.
199
218
.10.1016/0047-259X(82)90015-X
48.
Bickel
,
D. R.
,
2022
, “
The Propagation and Reduction of Uncertainty Left Unquantified by Confidence Intervals, p-Values, Neural Network Predictions, Posterior Distributions, and Other Statistical Results
,”
ASME J. Verif. Valid. Uncert.
, (accepted).10.1115/1.4066380
You do not currently have access to this content.