This note considers the stability of linear time varying second order systems. It studies the case where the stiffness matrix is a function of time. It provides sufficient conditions for stability and asymptotic stability of the system provided that certain conditions on the stiffness matrix are satisfied.
Issue Section:
Technical Briefs
1.
Müller
, P. C.
, and Schiehlen
, W. O.
, 1985, Linear Vibrations
, Martinus Nijhoff
, Dordrecht, Netherlands
.2.
D’Angelo
, H.
, 1970, Linear Time-Varying Systems: Analysis and Synthesis
, Allyn and Bacon
, Boston
.3.
Hsu
, P.
, and Wu
, J. W.
, 1991, “Stability of Second-Order Multidimensional Linear Time Varying Systems
,” J. Guid. Control Dyn.
0731-5090, 14
(5
), pp. 1040
–1045
.4.
Shrivastava
, S. K.
, and Pradeep
, S.
, 1985, “Stability of Multidimensional Linear Time Varying Systems
,” J. Guid. Control Dyn.
0731-5090, 8
(5
), pp. 579
–583
.5.
Wu
, J. W.
, and Fung
, R. F.
, 1999, “On Stability of Time Varying Multidimensional Linear Systems
,” J. Geophys. Res.
0148-0227, 121
, pp. 509
–511
.6.
Gil’
, M. I.
, 1998, Stability of Finite and Infinite Dimensional Systems
, Kluwer
, Boston
.7.
Willems
, J. L.
, 1970, Stability Theory of Dynamical Systems
, Wiley
, New York
.8.
Coppel
, W. A.
, 1965, Stability and Asymptotic Behavior of Differential Equations
, D. C. Heath
, Boston
.9.
Slotine
, J. J. E.
, and Li
, W.
, 1991, Applied Nonlinear Control
, Prentice-Hall
, Englewood Cliffs, NJ
.10.
Shahruz
, S. M.
, 2000, “Discussion on Stability of Time Varying Multidimensional Linear Systems
,” ASME J. Vibr. Acoust.
0739-3717, 122
, pp. 337
–338
.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.