This work is concerned with the similarity between the two important reduction schemes: optimal prediction and stochastic averaging. To this end, we consider a randomly perturbed Hamiltonian system and derive a generalized Langevin equation from a Kolmogorov backward equation. We then show the similarity by adopting conditional expectation as our projection operator in the generalized Langevin equation. The characteristics of the conditional expectation play a central role in our study.

1.
Carr
,
J.
, 1980,
Applications of Centre Manifold Theory
,
Springer
,
New York, NY
.
2.
Constantin
,
P.
,
Foias
,
C.
,
Nicolaenko
,
B.
, and
Temam
,
R.
, 1994,
Integral Manifold and Inertial Manifold
,
Springer
,
New York, NY
.
3.
Stratonovich
,
R. L.
, 1963,
Topics in the Theory of Random Noise
,
Gordon and Breach
,
New York, NY
.
4.
Khasminskii
,
R. Z.
, 1966, “
On Stochastic Processes Defined by Defferential Equations with a Small Parameter
,”
Theor. Probab. Appl.
0040-585X,
11
(
2
), pp.
211
228
.
5.
Khasminskii
,
R. Z.
, 1966, “
A Limit Theorem for Solutions of Differential Equations with Random Right-Hand Side
,”
Theor. Probab. Appl.
0040-585X,
11
(
3
), pp.
390
406
.
6.
Namachchivaya
,
N. S.
, 1990, “
Stochastic Bifurcation
,”
Appl. Math. Comput.
0096-3003,
38
, pp.
101
159
.
7.
Chorin
,
A. J.
,
Kast
,
A.
, and
Kupferman
,
R.
, 1998, “
Optimal Prediction of Underresolved Dynamics
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
95
, pp.
4094
4098
.
8.
Chorin
,
A. J.
,
Kast
,
A. P.
, and
Kupferman
,
R.
, 1999, “
On the Prediction of Large-Scale Dynamics Using Unresolved Computations
,” AMS
Contemp. Math.
0271-4132,
238
, pp.
53
75
.
9.
Chorin
,
A. J.
,
Kast
,
A. P.
, and
Kupferman
,
R.
, 1999, “
Unresolved Computation and Optimal Prediction
,”
Commun. Pure Appl. Math.
0010-3640,
52
, pp.
1231
1254
.
10.
Chorin
,
A. J.
,
Hald
,
O. H.
, and
Kupferman
,
R.
, 2000, “
Optimal Prediction and the Mori–Zwanzig Representation of Irreversible Processes
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
97
(
7
), pp.
2968
2973
.
11.
Chorin
,
A. J.
,
Hald
,
O. H.
, and
Kupferman
,
R.
, 2002, “
Optimal Prediction With Memory
,”
Physica D
0167-2789,
166
, pp.
239
257
.
12.
Mori
,
H.
, 1965, “
Transport, Collective Motion, and Brownian Motion
,”
Prog. Theor. Phys.
0033-068X,
33
, pp.
423
450
.
13.
Zwanzig
,
R.
, 1973, “
Nonlinear Generalized Langevin Equations
,”
J. Stat. Phys.
0022-4715,
9
, pp.
215
220
.
14.
Oksendal
,
B.
, 2000,
Stochastic Differential Equations: An Introduction with Applicatioins
,
Springer Verlag
,
Berlin, Germany
.
15.
Courant
,
R.
, and
John
,
F.
, 1974,
Introduction to Calculus and Analysis
,
Wiley
,
New York, NY
.
16.
Namachchivaya
,
N. S.
, and
Sowers
,
R. B.
, 2002, “
Rigorous Stochastic Averaging at a Center with Additive Noise
,”
Meccanica
0025-6455,
37
, pp.
85
114
.
17.
Arnold
,
L.
,
Namachchivaya
,
S. N.
, and
Schenk
,
K. L.
, 1996, “
Toward an Understanding of Stochastic Hopf Bifurcations: A Case Study
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
6
(
11
), pp.
1947
1975
.
You do not currently have access to this content.