Two general linear time-varying system identification methods for multiple-input multiple-output systems are proposed based on the proper orthogonal decomposition (POD). The method applies the POD to express response data for linear or nonlinear systems as a modal sum of proper orthogonal modes and proper orthogonal coordinates (POCs). Drawing upon mode summation theory, an analytical expression for the POCs is developed, and two deconvolution-based methods are devised for modifying them to predict the response of the system to new loads. The first method accomplishes the identification with a single-load-response data set, but its applicability is limited to lightly damped systems with a mass matrix proportional to the identity matrix. The second method uses multiple-load-response data sets to overcome these limitations. The methods are applied to construct predictive models for linear and nonlinear beam examples without using prior knowledge of a system model. The method is also applied to a linear experiment to demonstrate a potential experimental setup and the method’s feasibility in the presence of noise. The results demonstrate that while the first method only requires a single set of load-response data, it is less accurate than the multiple-load method for most systems. Although the methods are able to reconstruct the original data sets accurately even for nonlinear systems, the results also demonstrate that a linear time-varying method cannot predict nonlinear phenomena that are not present in the original signals.

1.
Huebner
,
K. H.
,
Byrom
,
T. G.
,
Dewhirst
,
D. L.
, and
Smith
,
D. E.
, 2001,
The Finite Element Method for Engineers
,
Wiley
,
New York
, Chap. 1.
2.
Kerschen
,
G.
,
Worden
,
K.
,
Vakakis
,
A. F.
, and
Golinval
,
J. C.
, 2006, “
Past, Present and Future of Nonlinear System Identification in Structural Dynamics
,”
Mech. Syst. Signal Process.
0888-3270,
20
(
3
), pp.
505
592
.
3.
Ewins
,
D. J.
, 1984,
Modal Testing: Theory and Practice
,
Research Studies
,
Hertfordshire
, Chap. 5.
4.
Juang
,
J. N.
, 1994,
Applied System Identification
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
5.
Nelles
,
O.
, 2001,
Nonlinear System Identification
,
Springer
,
Berlin
.
6.
Worden
,
K.
, and
Tomlinson
,
G. R.
, 2001,
Nonlinearity in Structural Dynamics: Detection, Identification, and Modeling
,
Institute of Physics
,
PA
.
7.
Verhaegen
,
M.
, and
Yu
,
X.
, 1995, “
A Class of Subspace Model Identification Algorithms to Identify Periodically and Arbitrarily Linear Time-Varying Systems
,”
Automatica
0005-1098,
31
(
2
), pp.
201
216
.
8.
Niedzwiecki
,
M.
, 1990, “
Recursive Functional Series Modeling Estimators for Identification of Time-Varying Plants: More Bad News Than Good?
IEEE Trans. Autom. Control
0018-9286,
35
(
5
), pp.
610
616
.
9.
MacNeil
,
J. B.
,
Kearney
,
R. E.
, and
Hunter
,
I. W.
, 1992, “
Identification of Time-Varying Biological Systems from Ensemble Data
,”
IEEE Trans. Biomed. Eng.
0018-9294,
39
(
12
), pp.
1213
1225
.
10.
Kerschen
,
G.
,
Golinval
,
J. C.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
, 2005, “
The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview
,”
Nonlinear Dyn.
0924-090X,
41
(
1–3
), pp.
147
169
.
11.
Ma
,
X.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
, 2001, “
Karhunen-Loève Modes of a Truss: Transient Response Reconstruction and Experimental Verification
,”
AIAA J.
0001-1452,
39
(
4
), pp.
687
696
.
12.
Berkooz
,
G.
,
Homes
,
P.
, and
Lumley
,
J. L.
, 1993, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
25
(
1
), pp.
539
575
.
13.
Lucia
,
D. J.
,
Beran
,
P. S.
, and
Silva
,
W. A.
, 2003, “
Aeroelastic System Development Using Proper Orthogonal Decomposition and Volterra Theory
,”
AIAA Structures, Structural Dynamics, and Materials Conference
,
AIAA
,
Norfolk, VA
, AIAA Paper No. 2003-1922.
14.
Masarati
,
P.
,
Quaranta
,
G.
,
Lanz
,
M.
, and
Mantegazza
,
P.
, 2003, “
Dynamic Characterization and Stability of a Large Size Multibody Tiltrotor Model by POD Analysis
,”
ASME 19th Biennial Conference on Mechanical Vibration and Noise
,
ASME
,
Chicago, IL
, ASME Paper No. DETC∕VIB-48440.
15.
Lenaerts
,
V.
,
Kerschen
,
G.
, and
Golinval
,
J. C.
, 2001, “
Proper Orthogonal Decomposition for Model Updating of Nonlinear Mechanical Systems
,”
Mech. Syst. Signal Process.
0888-3270,
15
(
1
), pp.
31
43
.
16.
Azeez
,
M. F. A.
, and
Vakakis
,
A. F.
, 2001, “
Proper Orthogonal Decomposition (POD) of a Class of Vibroimpact Oscillations
,”
J. Sound Vib.
0022-460X,
240
(
5
), pp.
859
889
.
17.
Allison
,
T. C.
,
Miller
,
A. K.
, and
Inman
,
D. J.
, 2007, “
Unforced Response Simulation by Proper Orthogonal Value Recalculation
,”
AIAA Structures, Structural Dynamics, and Materials Conference
,
AIAA
,
Honolulu, HI
.
18.
Kappagantu
,
R.
, and
Feeny
,
B. F.
, 1999, “
An Optimal Modal Reduction of a System With Frictional Excitation
,”
J. Sound Vib.
0022-460X,
224
(
5
), pp.
863
877
.
19.
Meirovitch
,
L.
, 1997,
Principles and Techniques of Vibrations
,
Prentice-Hall
,
Englewood Cliffs, NJ
, Chaps., 1 and 7.
20.
Dacunha
,
J. J.
, 2005, “
Transition Matrix and Generalized Matrix Exponential Via the Peano-Baker Series
,”
Journal of Difference Equations and Applications
,
11
(
15
), pp.
1245
1264
.
21.
Rahman
,
J.
, and
Sarkar
,
T. K.
, 1995, “
Deconvolution and Total Least Squares in Finding the Impulse Response of an Electromagnetic System From Measured Data
,”
IEEE Trans. Antennas Propag.
0018-926X,
43
(
4
), pp.
416
421
.
22.
Feeny
,
B. F.
, 2002, “
On the Proper Orthogonal Modes and Normal Modes of Continuous Vibration Systems
,”
ASME J. Vibr. Acoust.
0739-3717,
124
(
1
), pp.
157
160
.
23.
Feeny
,
B. F.
, 1998, “
On the Physical Interpretation of Proper Orthogonal Modes in Vibrations
,”
J. Sound Vib.
0022-460X,
211
(
4
), pp.
607
616
.
24.
Virgin
,
L. N.
, 2000,
Introduction to Experimental Nonlinear Dynamics: A Case Study in Mechanical Vibration
,
Cambridge University Press
,
New York
.
25.
Riad
,
S. M.
, 1986, “
The Deconvolution Problem: An Overview
,”
Proc. IEEE
0018-9219,
74
(
1
), pp.
82
85
.
You do not currently have access to this content.