Lead zirconate titanate (PbZrxTi1-xO3, or PZT) is a piezoelectric material widely used as sensors and actuators. For microactuators, PZT often appears in the form of thin films to maintain proper aspect ratios. One major challenge encountered is accurate measurement of piezoelectric coefficients of PZT thin films. In this paper, we present a simple, low-cost, and effective method to measure piezoelectric coefficient d33 of PZT thin films through use of basic principles in mechanics of vibration. A small impact hammer with a tiny tip acts perpendicularly to the PZT thin-film surface to generate an impulsive force. In the meantime, a load cell at the hammer tip measures the impulsive force and a charge amplifier measures the responding charge of the PZT thin film. Then the piezoelectric coefficient d33 is obtained from the measured force and charge based on piezoelectricity and a finite element modeling. We also conduct a thorough parametric study to understand the sensitivity of this method on various parameters, such as substrate material, boundary conditions, specimen size, specimen thickness, thickness ratio, and PZT thin-film material. Two rounds of experiments are conducted to demonstrate the feasibility and accuracy of this new method. The first experiment is to measure d33 of a PZT disk resonator whose d33 is known. Experimental results show that d33 measured via this method is as accurate as that from the manufacturer's specifications within its tolerance. The second experiment is to measure d33 of PZT thin films deposited on silicon substrates. With the measured d33, we predict the displacement of PZT thin-film membrane microactuators. In the meantime, the actuator displacement is measured via a laser Doppler vibrometer. The predicted and measured displacements agree very well validating the accuracy of this new method.

References

1.
Zhang
,
Q. Q.
,
Djuth
,
F. T.
,
Zhou
,
Q. F.
, Hu, C. H., Cha, J. H., and Shung, K. K.,
2006
, “
High Frequency Broadband PZT Thick Film Ultrasonic Transducers for Medical Imaging Applications
,”
Ultrasonics
44
,
pp.
711
715
.10.1016/j.ultras.2006.05.130
2.
Guo
,
W.
,
Wang
,
Z.
,
Yao
,
X.
, Huang, T., and Bi, C.,
1998
, “
A High Bandwidth Piezoelectric Suspension for Track Density Magnetic Data Storage Devices
,”
IEEE Trans. Magn.
34
(
4
),
pp.
1907
1909
.10.1109/20.706739
3.
Wu
,
C.-C.
,
Lee
,
C.-C.
,
Cao
,
G. Z.
, and
Shen
,
I. Y.
,
2006
, “
Effects of Corner Frequency on Bandwidth and Resonance Amplitude in Designing PZT Thin-Film Actuators
,”
Sensor. Actuat. A-Phys.
125
(
2
),
pp.
178
185
.10.1016/j.sna.2005.07.007
4.
Wood
,
R. J.
,
Steltz
,
E.
, and
Fearing
,
R. S.
,
2005
, “
Optimal Energy Density Piezoelectric Bending Actuators
,”
Sensor. Actuat. A-Phys.
119
(
2
),
476
488
.10.1016/j.sna.2004.10.024
5.
Fischer
,
M.
, and
Niederdrank
,
T.
,
2004
, “
Micromechanical Piezoelectric Actuator for Hearing Aid Application
,”
ACTA Acust. United Ac.
,
90
(
5
),
pp.
868
872
.
6.
Lee
,
C.-C.
,
Guo
,
Q.
,
Hume
,
C. R.
,
Cao
,
G. Z.
, and
Shen
,
I. Y.
,
2007
, “
Electrode Optimization of PZT Thin-Film Microactuators for Hybrid Cochlear Implants
,”
Abstracts of 2007 Conference on Implantable Auditory Prostheses
,
July
15–20
,
Lake Tahoe
,
CA
.
7.
Chang
,
F. K.
,
Markmiller
,
J. F. C.
,
Ihn
,
J. B.
, and
Cheng
,
K. Y.
,
2007
, “
A Potential Link From Damage Diagnostics to Health Prognostics of Composites Through Built-In Sensors
,”
ASME J. Vib. Acoust.
,
129
(
6
),
pp.
718
729
.10.1115/1.2730530
8.
Zhao
,
X.
,
Qian
,
T.
,
Mei
,
G.
, and
Kwan
,
C.
,
2007
, “
Active Health Monitoring of an Aircraft Wing With an Embedded Piezoelectric Sensor/Actuator Network: II. Wireless Approaches
,”
Smart Mater. Struct.
,
16
(
4
),
pp.
1218
1225
.10.1088/0964-1726/16/4/033
9.
Chen
,
S. C.
,
Cheng
,
C. H.
, and
Lin
,
Y. C.
,
2007
, “
Fabrication of Components for a Valve-Less Micropump or Microejector by Multilevel Electroforming Technology
,”
Microsyst. Technol.
13
(
5-6
),
pp.
455
463
.10.1007/s00542-006-0209-9
10.
Wang
,
D. A.
,
Cheng
,
C. H.
,
Hsieh
,
Y. H.
, and
Zhang
,
Z. X.
,
2007
, “
Analysis of an Annular PZT Actuator for a Droplet Ejector
,”
Sensor. Actuat. A-Phys.
137
(
2
),
pp.
330
337
.10.1016/j.sna.2007.03.020
11.
Shibata
,
T.
,
Unno
,
K.
,
Makino
,
E.
, and
Shimada
,
S.
,
2004
, “
Fabrication and Characterization of Diamond AFM Probe Integrated With PZT Thin Film Sensor and Actuator
,”
Sensor. Actuat. A-Phys.
114
(
2-3
),
pp.
395
405
.10.1016/j.sna.2003.11.025
12.
Yang
,
W.
,
Lee
,
S. Y.
, and
You
,
B. J.
,
2010
, “
A Piezoelectric Actuator With a Motion-Decoupling Amplifier for Optical Disk Drives
,”
Smart Mater. Struct.
,
19
(
6
), p. 065027.
13.
He
,
Z. M.
,
Loh
,
H. T.
, and
Ong
,
E. H.
,
2008
, “
Reliability Evaluation of Piezoelectric Micro-Actuators With Application in Hard Disk Drives
,”
IEEE Trans. Magn.
,
44
(
11
),
pp.
3722
3725
.10.1109/TMAG.2008.2002619
14.
Jarzyna
,
W.
,
Augustyniak
,
M.
, and
Bochenski
,
M.
,
2010
, “
Active Poezoelectric Structures in Control Systems
,”
Przeglad Elektrotechniczny
,
86
(
4
),
pp.
252
255
.
15.
Chen
,
X.
,
Xu
,
S.
,
Yao
,
N.
, and
Shi
,
Y.
,
2010
, “
1.6V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers
,”
Nano. Lett.
,
10
(
6
),
pp.
2133
2137
.10.1021/nl100812k
16.
Shen
,
D.
,
Park
,
J.
,
Noh
,
J.
,
Choe
,
S.
,
Kim
,
S.
,
Wikle
,
H.
, and
Kim
,
D.
,
2009
, “
Micromachined PZT Cantilever Based on SOI Structure for Low Frequency Vibration Energy Harvesting
,”
Sensor. Actuat. A-Phys.
154
(
1
),
pp.
103
108
.10.1016/j.sna.2009.06.007
17.
Li
,
Y.
,
Li
,
W.
,
Guo
,
T.
,
Yang
,
Z.
,
Fu
,
X.
, and
Hu
,
X.
,
2009
, “
Study on Structure Optimization of a Piezoelectric Cantilever With a Proof Mass for Vibration-Powered Energy Harvesting System
,”
J. Vac. Sci. Technol. B
,
27
(
3
),
pp.
1288
1290
.10.1116/1.3119677
18.
Ou
,
J.
, and
Li
,
H.
,
2010
, “
Structural Health Monitoring in Mainland China: Review and Future Trends
,”
Struct. Health Mon.
,
9
(
3
),
pp.
219
231
.10.1177/1475921710365269
19.
Zhang
,
M.
,
Jia
,
Z.
, and
Ren
,
T.
,
2009
, “
Effects of Electrodes on the Properties of Sol-Gel PZT Based Capacitors in FeRAM
,”
Solid State Electron. Lett.
,
53
(
5
),
pp.
473
477
.10.1016/j.sse.2009.03.005
20.
Song
,
S.
,
Song
,
Z.
,
Liu
,
B.
,
Wu
,
L.
, and
Feng
,
S.
,
2010
, “
Ge2Sb2Te5 and PbZr0.30Ti0.70O3 Composite Films for Application in Phase Change Random Access Memory
,”
Mater. Lett.
,
64
(
3
),
pp.
317
319
.10.1016/j.matlet.2009.11.001
21.
Miyake
,
M.
,
Scott
,
J. F.
,
Lou
,
X. J.
,
Morrison
,
F. D.
,
Nonaka
,
T.
,
Motoyama
,
S.
,
Tatsuta
,
T.
, and
Tsuji
,
O.
,
2008
, “
Submicron Three-Dimensional Trenched Electrodes and Capacitors for DRAMs and FRAMs: Fabrication and Electrical Testing
,”
J. Appl. Phys.
,
104
(
6
),
p.
064112
.10.1063/1.2981197
22.
Dargie
,
P. G.
,
Harris
,
N. R.
,
White
,
N. M.
,
Atkinson
,
J. K.
, and
Sion
,
R. P.
,
2007
, “
Characterisation of Screen Printable Piezoelectric Thick-Films
,”
Proceedings of the Eighth Conference on Sensors and Their Applications
,
September
7–10
,
Glasgow
,
UK
.
23.
Zhang
,
Q. M.
,
Pan
,
W. Y.
, and
Cross
,
L. E
,
1988
, “
Laser Interferometer for the Study of Piezoelectric and Electrostrictive Strains
,”
J. Appl. Phys.
,
63
(
8
),
pp.
2492
2496
.10.1063/1.341027
24.
Rittenmyer
,
K.
, and
Dubbelday
,
P.
,
1992
, “
Direct Measurement of the Temperature-Dependent Piezoelectric Coefficients of Composite Materials by Laser Doppler Vibrometry
,”
J. Acoust. Soc. Am.
,
91
(
4
),
pp.
2254
2260
.10.1121/1.403659
25.
Li
,
F.
, and
Fang
,
D.
,
2005
, “
Effects of Electrical Boundary Conditions and Poling Approaches on the Mechanical Depolarization Behavior of PZT Ceramics
,”
Acta Mater.
,
53
(
9
),
pp.
2665
2673
.10.1016/j.actamat.2005.02.031
26.
Berfield
,
T. A.
,
Ong
,
R. J.
,
Payne
,
D. A.
, and
Sottos
,
N. R.
,
2007
, “
Residual Stress Effects on Piezoelectric Response of Sol-Gel Derived Lead Zirconate Titanate Thin Films
,”
J. Appl. Phys.
,
101
(
2
),
p.
024102
.10.1063/1.2422778
27.
Ong
,
R. J.
,
Berfield
,
T. A.
,
Sottos
,
N. R.
, and
Payne
,
D. A.
,
2005
, “
Sol-Gel Derived Pb(Zr,Ti)O3 Thin Films: Residual Stress and Electrical Properties
,”
J. Eur. Ceram. Soc.
,
25
,
pp.
2247
2251
.10.1016/j.jeurceramsoc.2005.03.103
28.
Maiwa
,
H.
,
Maria
,
J. P.
,
Christman
,
J. A.
,
Kim
,
S. H.
,
Streiffer
,
S. K.
, and
Kingon
,
A. I.
,
1999
, “
Measurement and Calculation of PZT Thin Film Longitudinal Piezoelectric Coefficients
,”
Integr. Ferroelectr.
,
24
,
pp.
139
146
.10.1080/10584589908215586
29.
Lefki
,
K.
, and
Dormans
,
G. J. M.
,
1994
, “
Measurement of Piezoelectric Coefficients of Ferroelectric Thin Film
,”
J. Appl. Phys.
,
76
(
3
),
pp.
1764
1767
.10.1063/1.357693
30.
Al-Ahmad
,
M.
, and
Plana
,
R.
,
2007
, “
A Novel Method for PZT Thin Film Piezoelectric Coefficients Determination Using Conventional Impedance Analyzer
,”
Proceedings of the 37th European Microwave Conference
,
October
2007
,
Munich
,
Germany
.
31.
Park
,
G.
,
Choi
,
J.
,
Ryu
,
J.
,
Fan
,
H.
, and
Kim
,
H.
,
2002
, “
Measurement of Piezoelectric Coefficients of Lead Zirconate Titanate Thin Films by Strain-Monitoring Pneumatic Loading Method
,”
Appl. Phys. Lett.
,
80
(
24
),
pp.
4606
4608
.10.1063/1.1487901
32.
Kholkin
,
A. L.
,
Wutchrich
,
Ch.
,
Taylor
,
D. V.
, and
Setter
,
N.
,
1996
, “
Interferometric Measurements of Electric Field-Induced Displacements in Piezoelectric Thin Films
,”
Rev. Sci. Instrum.
,
67
(
5
),
pp.
1935
1941
.10.1063/1.1147000
33.
Chao
,
C.
,
Wang
,
Z.
, and
Zhu
,
W.
,
2005
, “
Measurement of Longitudinal Piezoelectric Coefficient of Lead Zirconate Titanate Thin/Thick Films Using a Novel Scanning Mach-Zehnder Interferometer
,”
Thin Solid Films
,
493
(
1-2
),
pp.
313
318
.10.1016/j.tsf.2005.08.005
34.
Lee
,
C.-C.
,
Cao
,
G. Z.
, and
Shen
,
I. Y.
,
2009
, “
Correlation Improvement between Theoretical and Experimental Results of PZT Thin-Film Membrane Actuators
,”
Proceeding of the ASME 2009 Design Engineering Technical Conference & Computers and Information in Engineering Conference
,
August
30
September
2
,
San Diego, CA
.
You do not currently have access to this content.