Ultrasonic waves at 1 MHz are used to send information across solid walls without the needs for through wall penetrations. A communication channel is established by attaching a set of three ultrasonic transducers to the wall. The first transducer transmits a continuous ultrasonic wave into the wall. The second transducer is mounted on the opposite side of the wall (inside) and operates as a receiver and signal modulator. The third transducer, the outside receiving transducer, is installed on the same side as the first transducer where it is exposed to the signal reflected from the blended interface of the inside wall and inside transducer. Inside sensor data is digitized and the bit state is used to vary in time the electrical load connected to the inside transducer, changing its acoustic impedance in accordance with each data bit. These impedance changes modulate the amplitude of the reflected ultrasonic signal. The modulated signal is detected at the outside receiving transducer, where it is then demodulated to recover the data. Additionally, some of the ultrasonic power received at the inside transducer is harvested to provide energy for the communication and sensor system on the inside. The entire system (ultrasonic, solid wall, and electronic) is modeled in the electrical domain by means of electro-mechanical analogies. This approach enables the concurrent simulation of the ultrasonic and electronic components. A model of the communication system is implemented in an electronic circuit simulation package, which assisted in the analysis and optimization of the communication channel. Good agreement was found between the modeled and experimental results.

References

1.
Kino
,
G. S.
,
1988
,
Acoustic Waves: Devices, Imaging and Analog Signal Processing
,
Prentice Hall
,
Englewood Cliffs, NJ
.
2.
Arnau
,
A.
,
2004
,
Piezoelectric Transducers and Applications
,
Springer
,
Berlin
.
3.
Hu
,
Y.
,
Zhang
,
X.
,
Yang
,
J.
, and
Jiang
,
Q.
,
2003
, “
Transmitting Electric Energy Through a Metal Wall by Acoustic Waves Using Piezoelectric Transducers
,”
IEEE Trans. Ultrason., Ferroelect., Freq. Contr.
,
50
(
7
), pp.
773
781
.10.1109/TUFFC.2003.1214497
4.
Sherrit
,
S.
,
Badescu
,
M.
,
Bao
,
X.
,
Bar-Cohen
,
Y.
, and
Chang
,
Z.
,
2005
, “
Efficient Electromechanical Network Models for Wireless Acoustic-Electric Feed Throughs
,”
Proc. SPIE
,
5758
(
1
), pp.
362
372
.10.1117/12.598300
5.
Chang
,
Z.
,
Bao
,
X.
,
Doty
,
B. J.
,
Sherrit
,
S.
,
Bar-Cohen
,
Y.
,
Badescu
,
M.
, and
Aldrich
,
J.
,
2007
, “
Power Loss Considerations in Wireless Piezoelectric Acoustic-Electric Power Feedthru
,”
14th International Symposium of SPIE, Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring
,
Proceedings of SPIE—The International Society for Optical Engineering
, San Diego, CA, March 18–22.10.1117/12.716433
6.
Maione
,
E.
,
Tortoli
,
P.
,
Lypacewicz
,
G.
, and
Nowicki
,
A.
,
1999
, “
PSpice Modeling of Ultrasound Transducers: Comparison of Software Models to Experiment
,”
IEEE Trans. Ultrason., Ferroelect., Freq. Contr.
,
46
(
2
), pp.
339
406
.10.1109/58.753029
7.
Deventer
,
J.
,
Löfqvist
,
T.
, and
Delsing
,
J.
,
2000
, “
PSpice Simulation of Ultrasonic Systems
,”
IEEE Trans. Ultrason., Ferroelect., Freq. Contr.
,
47
(
4
), pp.
1014
1024
.10.1109/58.852085
8.
Moss
,
S.
,
McMahon
,
P.
,
Konak
,
M.
,
Phoumsavanh
,
C.
,
Rajic
,
N.
,
Galea
,
S.
, and
Powlesland
,
I.
,
2008
, “
Modelling and Experimental Validation of the Acoustic Electric Feedthrough Technique
,” DSTO Research Report No. 0338.
9.
Püttmer
,
A.
,
Hauptmann
,
P.
,
Lucklum
,
R.
,
Krause
,
O.
, and
Henning
,
B.
,
1997
, “
SPICE Model for Lossy Piezoceramic Transducers
,”
IEEE Trans. Ultrason., Ferroelect., Freq., Contr.
,
44
(
1
), pp.
60
66
.10.1109/58.585191
10.
Schmerr
,
L. W.
,
1998
,
Fundamentals of Ultrasonic Nondestructive Evaluation: A Modeling Approach
,
Plenum Press
,
New York
.
11.
Moss
,
S.
,
Skippen
,
J.
,
Konak
,
M.
,
Powlesland
,
I.
, and
Galea
,
S.
,
2010
, “
Detachable Acoustic Electric Feedthrough
,”
Proc. SPIE
,
7647
, p.
764745
.10.1117/12.848901
12.
Desilets
,
C. S.
,
Fraser
,
J. D.
, and
Kino
,
G. S.
,
1978
, “
The Design of Efficient Broad-Band Piezoelectric Transducers
,”
IEEE Trans. Ultrason., Ferroelect., Freq. Contr.
,
25
(
3
), pp.
115
125
.10.1109/T-SU.1978.31001
13.
Kinsler
,
L. E.
,
Frey
,
A. R.
,
Coppens
,
A. B.
, and
Sanders
,
J. V.
,
2000
,
Fundamentals of Acoustics
. 4th ed.,
John Wiley & Sons, Inc.
,
New York
.
14.
Ulaby
,
F. T.
,
2006
,
Fundamental of Applied Electromagnetics
. 5th ed.
Prentice Hall
,
Englewood Cliffs, NJ
.
15.
Bathia
,
A. B.
,
1967
,
Ultrasonic Absorption: An Introduction to the Theory of Sound Absorption and Dispersion in Gases, Liquids and Solids
,
Oxford University Press
,
London
.
16.
Krautkrämer
,
J.
, and
Krautkrämer
,
H.
,
1990
,
Ultrasonic Testing of Materials
, 4th ed.,
Springer-Verlag
,
Berlin
.
17.
Roa-Prada
,
S.
,
2010
, “
Modeling, Design and Temperature Characterization of an Ultrasonic Through-Wall Communication System
,” Ph.D. thesis,
Rensselaer Polytechnic Institute
,
Troy, NY
.
18.
Saulnier
,
G. J.
,
Scarton
,
H. A.
,
Gavens
,
A. J.
,
Shoudy
,
D. A.
,
Murphy
,
T. L.
,
Wetzel
,
M.
,
Bard
,
S.
,
Roa-Prada
,
S.
, and
Das
,
P.
,
2006
, “
Through Wall Communication of Low-Rate Digital Data Using Ultrasound
,”
IEEE Ultrasonics Symposium
,
October 2006
, pp.
1385
1389
.
19.
Mason
,
W. P.
,
1942
,
Electromechanical Transducers and Wave Filters
,
Van Nostrand, New York
.
20.
Cadence Design Systems, Inc.
,
2009
, “
Cadence Design Systems
,” http:// www.cadence.com
21.
Rashid
,
M. H.
,
2003
,
Introduction to PSpice using OrCAD for Circuits and Electronics
, 3rd ed.,
Prentice Hall
,
Englewood Cliffs, NJ
.
22.
Leach
,
W. M.
,
1994
, “
Controlled-Source Analogous Circuits and SPICE Models for Piezoelectric Transducers
,”
IEEE Trans. Ultrason., Ferroelect., Freq., Contr.
,
41
(
1
), pp.
60
66
.10.1109/58.265821
23.
Moss
,
S.
,
Skippen
,
J.
,
Konak
,
M.
, and
Powlesland
,
I.
,
2010
, “
Footprint Reduction for the Acoustic Electric Feedthrough Technique
,” DSTO Research Report No. 2395.
24.
Landau
,
L. D.
, and
Lifschitz
,
E. M.
,
1986
,
Theory of Elasticity
,
Butterworth-Heinemann
,
Oxford, UK
.
25.
Lüthi
,
B.
,
2005
,
Physical Acoustics in the Solid State
,
Springer
,
Berlin
.
26.
Vezzeti
,
D. J.
,
1985
, “
Propagation of Bounded Ultrasonic Beams in Anisotropic Media
,”
J. Acoust. Soc. Am.
,
78
(
3
), pp.
1103
1108
.10.1121/1.393029
27.
Chou
,
P. C.
, and
Pagano
,
N.
,
1992
,
Elasticity. Tensor, Dyadic, and Engineering Approaches
,
Dover
,
New York
.
28.
Schmerr
,
L. W.
, and
Sedov
,
A.
,
1989
, “
An Elastodynamic Model for Compressional and Shear Wave Transducers
,”
J. Acoust. Soc. Am.
,
86
(
5
), pp.
1988
1999
.10.1121/1.398578
29.
Bass
,
R.
,
1958
, “
Diffractions Effects in the Ultrasonic Field of a Piston Source
,”
J. Acoust. Soc. Am.
,
30
(
7
), pp.
602
605
.10.1121/1.1909706
30.
APC International Ltd.
,
2002
,
Piezoelectric Ceramics: Principles and Applications
,
APC International Ltd.
,
Mackeyville, PA
.
31.
Zahnd
,
J.
, private communication.
32.
Roa-Prada
,
S.
,
Scarton
,
H. A.
,
Saulnier
,
G. J.
,
Shoudy
,
D. A.
,
Ashdown
,
J. D.
,
Das
,
P. K.
, and
Gavens
,
A. J.
,
2007
, “
Modeling of an Ultrasonic Communication System
,”
Proceedings of the 2007 ASME International Mechanical Engineering
,
Seattle, WA
, Paper No. IMECE 2007-43432.
33.
Moss
,
S.
,
Phoumsavanh
,
C.
,
Konak
,
M.
,
Tsoi
,
K.
,
Rajic
,
N.
,
Galea
,
S.
,
Powlesland
,
I.
, and
McMahon
,
P.
,
2009
, “
Design of the Acoustic Electric Feedthrough Demonstrator Mk-II
,”
Mater. Forum
,
33
, pp.
187
200
.
34.
Morgan Electroceramics
,
2009
, “
Piezoelectric Ceramics Properties & Applications
,” http://www.morganelectroceramics.com/access-pzbook.html
You do not currently have access to this content.