A parametric amplifier having a tunable, dual-frequency pumping signal and a controlled cubic stiffness term is realized and investigated experimentally. This device can be tuned to amplify a desired, single frequency weak signal, well below resonance. The transition between a previously described theoretical model and a working prototype requires an additional effort in several areas: modeling, design, calibration, identification, verification, and adjustment of the theoretical model. The present paper describes these necessary steps and analyzes the results. Tunability is achieved here by adding a digitally controlled feedback, driving a linear mechanical oscillator with an electromechanical actuator. The main advantage of the present approach stems from the separation of the controlled parametric and nonlinear feedback terms which are linked to the resonating element. This separation allows for the realization of feedback in an electronic form where a digital implementation adds further advantages as the feedback coefficients can be tuned in situ. This arrangement benefits from the mechanical resonance of a structure and from the ability to set the parametric excitation such that it accommodates sinusoidal input signals over a wide range of frequencies. The importance of an in situ identification phase is made clear in this work, as the precise setting of model and feedback parameters was shown to be crucial for successful application of the amplifier. A detailed model-identification effort is described throughout this paper. It has been shown through identification that the approach is robust despite some modeling uncertainties and imperfections.

References

1.
Rhoads
,
J. F.
,
Miller
,
N. J.
,
Shaw
,
S. W.
, and
Feeny
,
B. F.
,
2008
, “
Mechanical Domain Parametric Amplification
,”
ASME J. Vib. Acoust.
,
130
(
6
), p.
061006
.
2.
Billah
,
K. Y.
,
2004
, “
On the Definition of Parametric Excitation for Vibration Problems
,”
J. Sound Vib.
,
270
(
1–2
), pp.
450
454
.
3.
Rugar
,
D.
, and
Grütter
,
P.
,
1991
, “
Mechanical Parametric Amplification and Thermomechanical Noise Squeezing
,”
Phys. Rev. Lett.
,
67
(
6
), pp.
699
702
.
4.
Lacarbonara
,
W.
, and
Antman
,
S.
,
2008
, “
What is Parametric Excitation in Structural Dynamics?
,” ENOC-2008, ENOC, Saint Petersburg, Russia, pp. 9–17.
5.
Campanella
,
H.
,
2010
,
Acoustic Wave and Electromechanical Resonators: Concept to Key Applications
,
Artech House
,
Norwood, MA
.
6.
Pierce
,
A. D.
,
1981
,
Acoustics: An Introduction to Its Physical Principles and Applications
,
McGraw-Hill Book Company
,
New York
.
7.
Bishop
,
O.
,
1998
,
Understand Amplifiers
,
Newnes
,
Woburn, MA
.
8.
Kazimierczuk
,
M. K.
,
2014
,
RF Power Amplifier
,
Wiley
,
West Sussex, UK
.
9.
Rebeiz
,
G. M.
,
2004
,
RF MEMS: Theory, Design, and Technology
,
Wiley
, Hoboken, NJ.
10.
Huang
,
X. M. H.
,
Manolidis
,
M.
,
Jun
,
S. C.
, and
Hone
,
J.
,
2005
, “
Nanomechanical Hydrogen Sensing
,”
Appl. Phys. Lett.
,
86
(
14
), p.
143104
.
11.
Ilic
,
B.
,
Yang
,
Y.
,
Aubin
,
K.
,
Reichenbach
,
R.
,
Krylov
,
S.
, and
Craighead
,
H. G.
,
2005
, “
Enumeration of DNA Molecules Bound to a Nanomechanical Oscillator
,”
Nano Lett.
,
5
(
5
), pp.
925
929
.
12.
Perkins
,
N. C.
,
1992
, “
Modal Interactions in the Non-Linear Response of Elastic Cables Under Parametric/External Excitation
,”
Int. J. Non-Linear Mech.
,
27
(
2
), pp.
233
250
.
13.
Kim
,
C. H.
,
Perkins
,
N. C.
, and
Lee
,
C. W.
,
2003
, “
Parametric Resonance of Plates in a Sheet Metal Coating Process
,”
J. Sound Vib.
,
268
(
4
), pp.
679
697
.
14.
Plat
,
H.
, and
Izhak
,
B.
,
2013
, “
Optimizing Parametric Oscillators With Tunable Boundary Conditions
,”
J. Sound Vib.
,
332
(
3
), pp.
487
493
.
15.
Shibata
,
A.
,
Ohishi
,
S.
, and
Yabuno
,
H.
,
2015
, “
Passive Method for Controlling the Nonlinear Characteristics in a Parametrically Excited Hinged-Hinged Beam by the Addition of a Linear Spring
,”
J. Sound Vib.
,
350
, pp.
111
122
.
16.
Rokhsari
,
H.
,
Kippenberg
,
T. J.
,
Carmon
,
T.
, and
Vahala
,
K. J.
,
2005
, “
Radiation-Pressure-Driven Micro-Mechanical Oscillator
,”
Opt. Express
,
13
(
14
), pp.
5293
5301
.
17.
Baskaran
,
R.
, and
Turner
,
K.
,
2003
, “
Mechanical Domain Non-Degenerate Parametric Resonance in Torsional Mode Micro Electro Mechanical Oscillator
,”
12th IEEE International Conference on Solid-State Sensors, Actuators and Microsystems
(
TRANSDUCERS 2003
), Boston, MA, June 8–12, pp.
863
866
.
18.
Olkhovets
,
A.
,
Carr
,
D. W.
,
Parpia
,
J. M.
, and
Craighead
,
H. G.
,
2001
, “
Non-Degenerate Nanomechanical Parametric Amplifier
,”
14th IEEE International Conference on Micro Electro Mechanical Systems
(
MEMS 2001
), Interlaken, Switzerland, Jan. 25, pp.
298
300
.
19.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
2008
,
Nonlinear Oscillations
,
Wiley-VCH, Weinheim, Germany
.
20.
McLachlan
,
N. W.
,
1964
,
Theory and Applications of Mathieu Functions
,
Dover Publications
, New York.
21.
Yakubovich
,
V. A.
, and
Starzhinskiĭ
,
V. M.
,
1975
,
Linear Differential Equations With Periodic Coefficients
,
Wiley
,
New York
.
22.
Géradin
,
M.
, and
Rixen
,
D. J.
,
2014
,
Mechanical Vibrations: Theory and Application to Structural Dynamics
,
Wiley
,
West Sussex, UK
.
23.
Hand
,
L.
,
Finch
,
J.
, and
Robinett
,
R. W.
,
2000
, “
Analytical Mechanics
,”
Am. J. Phys.
,
68
(
4
), pp.
390
393
.
24.
Rhoads
,
J. F.
, and
Shaw
,
S. W.
,
2010
, “
The Impact of Nonlinearity on Degenerate Parametric Amplifiers Rhoads
,”
Appl. Phys. Lett.
,
96
(
23
), p.
234101
.
25.
Zhang
,
W.
,
Baskaran
,
R.
, and
Turner
,
K. L.
,
2002
, “
Effect of Cubic Nonlinearity on Auto-Parametrically Amplified Resonant MEMS Mass Sensor
,”
Sens. Actuators
, A,
102
(
1–2
), pp.
139
150
.
26.
DeMartini
,
B. E.
,
Rhoads
,
J. F.
,
Turner
,
K. L.
,
Shaw
,
S. W.
, and
Moehlis
,
J.
,
2007
, “
Linear and Nonlinear Tuning of Parametrically Excited MEMS Oscillators
,”
J. Microelectromech. Syst.
,
16
(
2
), pp.
310
318
.
27.
Adams
,
S. G.
,
Bertsch
,
F. M.
,
Shaw
,
K. A.
, and
MacDonald
,
N. C.
,
1998
, “
Independent Tuning of Linear and Nonlinear Stiffness Coefficients [Actuators]
,”
J. Microelectromech. Syst.
,
7
(
2
), pp.
172
180
.
28.
Bruland
,
K. J.
,
Garbini
,
J. L.
,
Dougherty
,
W. M.
, and
Sidles
,
J. A.
,
1998
, “
Optimal Control of Ultrasoft Cantilevers for Force Microscopy
,”
J. Appl. Phys.
,
83
(
8
), p.
3972
.
29.
Khan
,
Z.
,
Leung
,
C.
,
Tahir
,
B. A.
, and
Hoogenboom
,
B. W.
,
2010
, “
Digitally Tunable, Wide-Band Amplitude, Phase, and Frequency Detection for Atomic-Resolution Scanning Force Microscopy
,”
Rev. Sci. Instrum.
,
81
(
7
), p.
073704
.
30.
Meyer-Baese
,
U.
,
2007
,
Digital Signal Processing With Field Programmable Gate Arrays
,
Springer Science & Business Media
,
New York
.
31.
Dolev
,
A.
, and
Bucher
,
I.
,
2015
, “
A Parametric Amplifier for Weak, Low-Frequency Forces
,”
ASME
Paper No. DETC2015-46273.
32.
Dolev
,
A.
, and
Bucher
,
I.
,
2016
, “
Tuneable, Non-Degenerated, Nonlinear, Parametrically-Excited Amplifier
,”
J. Sound Vib.
,
361
, pp.
176
189
.
33.
Louisell
,
W. H.
,
1960
,
Coupled Mode and Parametric Electronics
,
Wiley
,
New York
.
34.
Bucher
,
I.
, and
Shomer
,
O.
,
2013
, “
Asymmetry Identification in Rigid Rotating Bodies—Theory and Experiment
,”
Mech. Syst. Signal Process.
,
41
(
1–2
), pp.
502
509
.
35.
Darlow
,
M. S.
,
2012
,
Balancing of High-Speed Machinery
,
Springer Science & Business Media
,
New York
.
36.
Nayfeh
,
A. H.
,
2008
,
Perturbation Methods
,
Wiley-VCH
,
Weinheim, Germany
.
37.
Kim
,
C. H.
,
Lee
,
C.-W.
, and
Perkins
,
N. C.
,
2003
, “
Nonlinear Vibration of Sheet Metal Plates Under Interacting Parametric and External Excitation During Manufacturing
,”
ASME
Paper No. DETC2003/VIB-48601.
38.
Björck
,
A.
,
1996
,
Numerical Methods for Least Squares Problems
,
SIAM
,
Philadelphia, PA
.
39.
Gao
,
F. X. Y.
, and
Snelgrove
,
W. M.
,
1991
, “
Adaptive Linearization of a Loudspeaker
,”
International Conference on Acoustics, Speech and Signal Processing
(
ICASSP 91
), Toronto, ON, Canada, Apr. 14–17, pp.
3589
3592
.
40.
Bucher
,
I.
, and
Halevi
,
O.
,
2014
, “
Optimal Phase Calibration of Nonlinear, Delayed Sensors
,”
Mech. Syst. Signal Process.
,
45
(
2
), pp.
424
432
.
41.
Minikes
,
A.
,
Bucher
,
I.
, and
Avivi
,
G.
,
2005
, “
Damping of a Micro-Resonator Torsion Mirror in Rarefied Gas Ambient
,”
J. Micromech. Microeng.
,
15
(
9
), pp.
1762
1769
.
42.
Ljung
,
L.
,
1999
,
System Identification: Theory for the User
,
Prentice Hall PTR
,
Upper Saddle River, NJ
.
43.
Young
,
P.
, and
Jakeman
,
A.
,
2007
, “
Refined Instrumental Variable Methods of Recursive Time-Series Analysis Part III. Extensions
,”
Int. J. Control
,
31
(
4
), pp.
741
764
.
This content is only available via PDF.
You do not currently have access to this content.