A sound–structure interaction model is established to study the vibroacoustic characteristics of a semisubmerged cylindrical shell using the wave propagation approach (WPA). The fluid free surface effect is taken into account by satisfying the sound pressure release condition. Then, the far-field sound pressure is predicted with shell's vibration response using the stationary phase method. Modal coupling effect arises due to the presence of the fluid free surface. New approaches are proposed to handle this problem, i.e., diagonal coupling acoustic radiation model (DCARM) and column coupling acoustic radiation model (CCARM). New approaches are proved to be able to deal with the modal coupling problem efficiently with a good accuracy at a significantly reduced computational cost. Numerical results also indicate that the sound radiation characteristics of a semisubmerged cylindrical shell are quite different from those from the shell fully submerged in fluid. But the far-field sound pressure of a semisubmerged shell fluctuates around that from the shell ideally submerged in fluid. These new approaches can also be used to study the vibroacoustic problems of cylindrical shells partially coupled with fluid.

References

1.
Junger
,
M. C.
,
1979
,
Sound, Structure and Their Interaction
,
MIT Press
,
Cambridge, MA
.
2.
Leissa
,
A. W.
,
1993
,
Vibration of Shells
,
Acoustical Society of America, New York
,
Washington, DC
.
3.
Fuller
,
C. R.
,
1981
, “
The Effects of Wall Discontinuities on the Propagation of Flexural Waves in Cylindrical Shells
,”
J. Sound Vib.
,
75
(
2
), pp.
207
228
.
4.
Fuller
,
C. R.
, and
Fahy
,
F. J.
,
1982
, “
Characteristics of Wave Propagation and Energy Distributions in Cylindrical Elastic Shells Filled With Fluid
,”
J. Sound Vib.
,
81
(
4
), pp.
501
518
.
5.
Zhang
,
X. M.
,
2002
, “
Frequency Analysis of Submerged Cylindrical Shells With the Wave Propagation Approach
,”
Int. J. Mech. Sci.
,
44
(
7
), pp.
1259
1273
.
6.
Zhang
,
X. M.
,
2002
, “
Parametric Studies of Coupled Vibration of Cylindrical Pipes Conveying Fluid With the Wave Propagation Approach
,”
Comput. Struct.
,
80
(
3–4
), pp.
287
295
.
7.
Zhang
,
X. M.
,
2001
, “
Vibration Analysis of Cross-Ply Laminated Composite Cylindrical Shells Using the Wave Propagation Approach
,”
Appl. Acoust.
,
62
(
11
), pp.
1221
1228
.
8.
Zhang
,
X. M.
,
Liu
,
G. R.
, and
Lam
,
K. Y.
,
2001
, “
Vibration Analysis of Thin Cylindrical Shells Using Wave Propagation Approach
,”
J. Sound Vib.
,
239
(
3
), pp.
397
403
.
9.
Zhang
,
X. M.
,
Liu
,
G. R.
, and
Lam
,
K. Y.
,
2001
, “
Coupled Vibration Analysis of Fluid-Filled Cylindrical Shells Using the Wave Propagation Approach
,”
Appl. Acoust.
,
62
(
3
), pp.
229
243
.
10.
Zhang
,
J. J.
,
Li
,
T. Y.
,
Ye
,
W. B.
, and
Zhu
,
X.
,
2010
, “
Acoustic Radiation of Damped Cylindrical Shell With Arbitrary Thickness in the Fluid Field
,”
J. Mar. Sci. Appl.
,
9
(
4
), pp.
431
438
.
11.
Yan
,
J.
,
Li
,
T. Y.
,
Liu
,
J. X.
, and
Zhu
,
X.
,
2006
, “
Space Harmonic Analysis of Sound Radiation From a Submerged Periodic Ring-Stiffened Cylindrical Shell
,”
Appl. Acoust.
,
67
(
8
), pp.
743
755
.
12.
Amabili
,
M.
,
1996
, “
Free Vibration of Partially Filled, Horizontal Cylindrical Shells
,”
J. Sound Vib.
,
191
(
5
), pp.
757
780
.
13.
Amabili
,
M.
,
1997
, “
Flexural Vibration of Cylindrical Shells Partially Coupled With External and Internal Fluids
,”
ASME J. Vib. Acoust.
,
119
(
3
), pp.
476
484
.
14.
Ergin
,
A.
,
1997
, “
An Approximate Method for the Free Vibration Analysis of Partially Filled and Submerged, Horizontal Cylindrical Shells
,”
J. Sound Vib.
,
207
(
5
), pp.
761
767
.
15.
Amabili
,
M.
, and
Dalpiaz
,
G.
,
1995
, “
Breathing Vibrations of a Horizontal Circular Cylindrical Tank Shell, Partially Filled With Liquid
,”
ASME J. Vib. Acoust.
,
117
(
2
), pp.
187
191
.
16.
Ergin
,
A.
, and
Temarel
,
P.
,
2002
, “
Free Vibration of a Partially Liquid-Filled and Submerged, Horizontal Cylindrical Shell
,”
J. Sound Vib.
,
254
(
5
), pp.
951
965
.
17.
Jouaillec
,
F.
, and
Jacquart
,
G.
,
2005
, “
The Acoustic Radiation From a Semi-Submerged Elastic Cylinder
,”
J. Acoust. Soc. Am.
,
84
(
1
), pp.
S58
S58
.
18.
Salaün
,
P.
,
1991
, “
Effect of a Free Surface on the Far-Field Pressure Radiated by a Point-Excited Cylindrical Shell
,”
J. Acoust. Soc. Am.
,
90
(
4
), pp.
2173
2181
.
19.
Li
,
H. L.
,
Wu
,
C. J.
, and
Huang
,
X. Q.
,
2003
, “
Parametric Study on Sound Radiation From an Infinite Fluid-Filled/Semi-Submerged Cylindrical Shell
,”
Appl. Acoust.
,
64
(
5
), pp.
495
509
.
20.
Flügge
,
W.
,
1973
,
Stress in Shells
,
Springer
,
Berlin
.
21.
Morand
,
H. J. P.
, and
Ohayon
,
R.
,
1995
,
Fluid Structure Interaction
, Wiley, New York.
22.
Sandman
,
B. E.
,
1976
, “
Numerical Fluid Loading Coefficients for the Modal Velocities of a Cylindrical Shell
,”
Comput. Struct.
,
6
(
6
), pp.
467
473
.
23.
Laulagnet
,
B.
, and
Guyader
,
J. L.
,
1989
, “
Modal Analysis of a Shell's Acoustic Radiation in Light and Heavy Fluids
,”
J. Sound Vib.
,
131
(
3
), pp.
397
415
.
24.
Stepanishen
,
P. R.
,
1982
, “
Modal Coupling in the Vibration of Fluid-Loaded Cylindrical Shells
,”
J. Acoust. Soc. Am.
,
71
(
4
), pp.
813
823
.
25.
Xu
,
M. B.
, and
Zhang
,
W. H.
,
2000
, “
Vibrational Power Flow Input and Transmission a Circular Cylindrical Shell Filled With Fluid
,”
J. Sound Vib.
,
234
(
3
), pp.
387
403
.
26.
Yan
,
J.
,
Li
,
F. C.
, and
Li
,
T. Y.
,
2007
, “
Vibrational Power Flow Analysis of a Submerged Viscoelastic Cylindrical Shell With Wave Propagation Approach
,”
J. Sound Vib.
,
303
(
1–2
), pp.
264
276
.
You do not currently have access to this content.