Abstract

By investigating the transverse vibrations of an axially moving string with time-varying supports, the existence and the pattern of static nodes are studied based on the assumed mode method and the linear superposition method. The explicit expressions for the response of the system with five different boundary conditions are illustrated. Traditional excited static strings show nodes when resonance occurs. However, it is found in this study that the static nodes of axially moving strings appear under arbitrary frequency even far away from resonance, if the excitation frequency is higher than the fundamental frequency. The varying nodes and frequencies under different time-varying supports are revealed.

References

References
1.
Rayleigh
,
L.
,
1945
,
The Theory of Sound
,
Dover
,
New York
.
2.
Routh
,
E. J.
,
1905
,
Dynamics of a System of Rigid Bodies
,
The Macmillan Company
,
New York
.
3.
Rizos
,
P. F.
,
Aspragathos
,
N.
, and
Dimarogonas
,
A. D.
,
1990
, “
Identification of Crack Location and Magnitude in a Cantilever Beam From the Vibration Modes
,”
J. Sound Vib.
,
138
(
3
), pp.
381
388
. 10.1016/0022-460X(90)90593-O
4.
Gladwell
,
G. M. L.
, and
Morassi
,
A.
,
1999
, “
Estimating Damage in a Rod From Changes in Node Positions
,”
Inverse Probl. Eng.
,
7
(
3
), pp.
215
233
. 10.1080/174159799088027695
5.
Dilena
,
M.
, and
Morassi
,
A.
,
2002
, “
Identification of Crack Location in Vibrating Beams From Changes in Node Positions
,”
J. Sound Vib.
,
255
(
5
), pp.
915
930
. 10.1006/jsvi.2001.4194
6.
Hu
,
H. Y.
,
2018
, “
On Node Number of a Natural Mode-Shape
,”
J. Dyn. Control
,
16
(
3
), pp.
193
200
(
in Chinese
). 10.6052/1672-6553-2018-017
7.
Aitken
,
J.
,
1878
, “
An Account of Some Experiments on Rigidity Produced by Centrifugal Force
,”
Lond. Edinb. Dubl. Philos. Mag. J. Sci.
,
5
(
29
), pp.
81
105
. 10.1080/14786447808639394
8.
Swope
,
R. D.
, and
Ames
,
W. F.
,
1963
, “
Vibrations of a Moving Threadline
,”
J. Franklin Inst.
,
275
(
1
), pp.
36
55
.10.1016/0016-0032(63)90619-7
9.
Ames
,
W. F.
,
Lee
,
S. Y.
, and
Zaiser
,
J. N.
,
1968
, “
Non-Linear Vibration of a Traveling Threadline
,”
Int. J. Non Linear Mech.
,
3
(
4
), pp.
449
456
. 10.1016/0020-7462(68)90031-0
10.
Mote
,
C. D. J.
,
1965
, “
A Study of Band Saw Vibrations
,”
J. Franklin Inst.
,
279
(
6
), pp.
430
444
. 10.1016/0016-0032(65)90273-5
11.
Mote
,
C. D. J.
,
1966
, “
On the Nonlinear Oscillation of an Axially Moving String
,”
ASME J. Appl. Mech.
,
33
(
2
), pp.
463
464
. 10.1115/1.3625075
12.
Meirovitch
,
L.
,
1974
, “
A New Method of Solution of the Eigenvalue Problem for Gyroscopic Systems
,”
AIAA J.
,
12
(
10
), pp.
1337
1342
. 10.2514/3.49486
13.
Wickert
,
J. A.
, and
Mote
,
C. D. J.
,
1988
, “
Linear Transverse Vibration of an Axially Moving String-Particle System
,”
J. Acoust. Soc. Am.
,
84
(
3
), pp.
963
969
. 10.1121/1.396611
14.
Perkins
,
N. C.
,
1990
, “
Linear Dynamics of a Translating String on an Elastic-Foundation
,”
ASME J. Vib. Acoust.
,
112
(
1
), pp.
2
7
. 10.1115/1.2930094
15.
Wickert
,
J. A.
, and
Mote
,
C. D. J.
,
1990
, “
Classical Vibration Analysis of Axially Moving Continua
,”
ASME J. Appl. Mech.
,
57
(
3
), pp.
738
744
. 10.1115/1.2897085
16.
Wickert
,
J. A.
,
1996
, “
Transient Vibration of Gyroscopic Systems With Unsteady Superposed Motion
,”
J. Sound Vib.
,
195
(
5
), pp.
797
807
. 10.1006/jsvi.1996.0462
17.
Chen
,
L. Q.
,
2005
, “
Analysis and Control of Transverse Vibrations of Axially Moving Strings
,”
ASME Appl. Mech. Rev.
,
58
(
2
), pp.
91
116
. 10.1115/1.1849169
18.
Ding
,
H.
,
2016
, “
Steady-State Responses of a Belt-Drive Dynamical System Under Dual Excitations
,”
Acta Mech. Sin.
,
32
(
1
), pp.
156
169
. 10.1007/s10409-015-0510-x
19.
Yang
,
X.-D.
,
Wu
,
H.
,
Qian
,
Y.-J.
,
Zhang
,
W.
, and
Lim
,
C. W.
,
2017
, “
Nonlinear Vibration Analysis of Axially Moving Strings Based on Gyroscopic Modes Decoupling
,”
J. Sound Vib.
,
393
, pp.
308
320
. 10.1016/j.jsv.2017.01.035
20.
Ding
,
H.
,
Lim
,
C. W.
, and
Chen
,
L.-Q.
,
2018
, “
Nonlinear Vibration of a Traveling Belt With Non-Homogeneous Boundaries
,”
J. Sound Vib.
,
424
, pp.
78
93
. 10.1016/j.jsv.2018.03.010
21.
Tang
,
Y. Q.
,
Luo
,
E. B.
, and
Yang
,
X. D.
,
2018
, “
Complex Modes and Traveling Waves in Axially Moving Timoshenko Beams
,”
Appl. Math. Mech. Engl. Ed.
,
39
(
4
), pp.
597
608
. 10.1007/s10483-018-2312-8
22.
Kelleche
,
A.
, and
Saedpanah
,
F.
,
2018
, “
Stabilization of an Axially Moving Viscoelastic String Under a Spatiotemporally Varying Tension
,”
Math. Methods Appl. Sci.
,
41
(
17
), pp.
7852
7868
. 10.1002/mma.5247
23.
Vetyukov
,
Y.
,
2018
, “
Non-Material Finite Element Modelling of Large Vibrations of Axially Moving Strings and Beams
,”
J. Sound Vib.
,
414
, pp.
299
317
. 10.1016/j.jsv.2017.11.010
24.
Ding
,
H.
,
Li
,
Y.
, and
Chen
,
L. Q.
,
2019
, “
Nonlinear Vibration of a Beam With Asymmetric Elastic Supports
,”
Nonlinear Dyn.
,
95
(
3
), pp.
2543
2554
. 10.1007/s11071-018-4705-0
25.
Ding
,
H.
,
Wang
,
S.
, and
Zhang
,
Y. W.
,
2018
, “
Free and Forced Nonlinear Vibration of a Transporting Belt With Pulley Support Ends
,”
Nonlinear Dyn.
,
92
(
4
), pp.
2037
2048
. 10.1007/s11071-018-4179-0
26.
Ghayesh
,
M. H.
,
2012
, “
Stability and Bifurcations of an Axially Moving Beam With an Intermediate Spring Support
,”
Nonlinear Dyn.
,
69
(
1–2
), pp.
193
210
. 10.1007/s11071-011-0257-2
27.
Ghayesh
,
M. H.
,
2009
, “
Stability Characteristics of an Axially Accelerating String Supported by an Elastic Foundation
,”
Mech. Mach. Theory
,
44
(
10
), pp.
1964
1979
. 10.1016/j.mechmachtheory.2009.05.004
28.
Ghayesh
,
M. H.
,
2010
, “
Parametric Vibrations and Stability of an Axially Accelerating String Guided by a Non-Linear Elastic Foundation
,”
Int. J. Non Linear Mech.
,
45
(
4
), pp.
382
394
. 10.1016/j.ijnonlinmec.2009.12.011
29.
Meirovitch
,
L.
,
1986
,
Elements of Vibration Analysis
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.