Abstract

In this study, a two-step experimental procedure is described to determine the electrostatic levitation force in micro-electromechanical system transducers. In these two steps, the microstructure is excited quasi-statically and dynamically and its response is used to derive the electrostatic force. The experimental results are obtained for a 1 mm by 1 mm plate that employs 112 levitation units. The experimentally obtained force is used in a lumped parameter model to find the microstructure response when it is subjected to different dynamical loads. The natural frequency and the damping ratios in the model are identified from the experimental results. The results show that this procedure can be used as a method to extract the electrostatic force as a function of the microstructure’s degrees-of-freedom. The procedure can be easily used for any microstructure with a wide variety of electrode configurations to predict the response of the system to any input excitation.

References

References
1.
Miles
,
R. N.
,
Cui
,
W.
,
Su
,
Q. T.
, and
Homentcovschi
,
D.
,
2015
, “
A MEMS Low-Noise Sound Pressure Gradient Microphone With Capacitive Sensing
,”
J. Microelectromech. Syst.
,
24
(
1
), pp.
241
248
. 10.1109/JMEMS.2014.2329136
2.
Guney
,
M. G.
,
Li
,
X.
,
Chung
,
V. P.
,
Paramesh
,
J.
,
Mukherjee
,
T.
, and
Fedder
,
G. K.
,
2018
, “
High Dynamic Range CMOS-MEMS Capacitive Accelerometer Array
,”
2018 IEEE Micro Electro Mechanical Systems (MEMS)
,
Belfast, Northern Ireland, UK
,
Jan. 2018
, pp.
992
995
.
3.
Mukhiya
,
R.
,
Agarwal
,
P.
,
Badjatya
,
S.
,
Garg
,
M.
,
Gaikwad
,
P.
,
Sinha
,
S.
,
Singh
,
A. K.
, and
Gopal
,
R.
,
2019
, “
Design, Modelling and System Level Simulations of DRIE-Based MEMS Differential Capacitive Accelerometer
,”
Microsyst. Technol.
,
25
(
9
), pp.
3521
3532
. 10.1007/s00542-018-04292-0
4.
Yang
,
C.
,
Tang
,
S.
, and
Tavassolian
,
N.
,
2017
, “
Utilizing Gyroscopes Towards the Automatic Annotation of Seismocardiograms
,”
IEEE Sens. J.
,
17
(
7
), pp.
2129
2136
. 10.1109/JSEN.2017.2663420
5.
Sheikhaleh
,
A.
,
Jafari
,
K.
, and
Abedi
,
K.
,
2019
, “
Design and Analysis of a Novel MOEMS Gyroscope Using an Electrostatic Comb-Drive Actuator and an Optical Sensing System
,”
IEEE Sens. J.
,
19
(
1
), pp.
144
150
. 10.1109/JSEN.2018.2875076
6.
Hasan
,
M. H.
,
Alsaleem
,
F. M.
, and
Ouakad
,
H. M.
,
2018
, “
Novel Threshold Pressure Sensors Based on Nonlinear Dynamics of MEMS Resonators
,”
J. Micromech. Microeng.
,
28
(
6
), p.
065007
. 10.1088/1361-6439/aab515
7.
Nabholz
,
U.
,
Heinzelmann
,
W.
,
Mehner
,
J. E.
, and
Degenfeld-Schonburg
,
P.
,
2018
, “
Amplitude- and Gas Pressure-Dependent Nonlinear Damping of High-Q Oscillatory MEMS Micro Mirrors
,”
J. Microelectromech. Syst.
,
27
(
3
), pp.
383
391
. 10.1109/JMEMS.2018.2816240
8.
Li
,
H.
,
Duan
,
X.
, and
Wang
,
T. D.
,
2017
, “
An Electrostatic MEMS Scanner With In-Plane and Out-of-Plane Two-dimensional Scanning Capability for Confocal Endoscopic in Vivo Imaging
,”
2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)
,
Las Vegas, NV
,
Jan. 2017
, pp.
514
517
.
9.
Stange
,
A.
,
Imboden
,
M.
,
Javor
,
J.
,
Barrett
,
L. K.
, and
Bishop
,
D. J.
,
2019
, “
Building a Casimir Metrology Platform With a Commercial MEMS Sensor
,”
Microsyst. Nanoeng.
,
5
(
1
), pp.
1
9
. 10.1038/s41378-019-0054-5
10.
Saadatnia
,
Z.
,
Esmailzadeh
,
E.
, and
Naguib
,
H. E.
,
2019
, “
High Performance Triboelectric Nanogenerator by Hot Embossing on Self-Assembled Micro-Particles
,”
Adv. Eng. Mater.
,
21
(
1
), p.
1700957
. 10.1002/adem.201700957
11.
Mohammed
,
Z.
,
Elfadel
,
I. M.
, and
Rasras
,
M.
,
2018
, “
High Dynamic Range z-Axis Hybrid Spring MEMS Capacitive Accelerometer
,”
2018 Symposium on Design, Test, Integration Packaging of MEMS and MOEMS (DTIP)
,
Roma, Italy
,
May 2018
, pp.
1
4
.
12.
Nayfeh
,
A. H.
,
Younis
,
M. I.
, and
Abdel-Rahman
,
E. M.
,
2007
, “
Dynamic Pull-In Phenomenon in MEMS Resonators
,”
Nonlinear Dyn.
,
48
(
1–2
), pp.
153
163
. 10.1007/s11071-006-9079-z
13.
Wang
,
W.
,
Ren
,
H.
,
Ma
,
W.
,
Qiu
,
C.
,
Chen
,
Z.
, and
Fan
,
B.
,
2016
, “
Electrostatic Repulsive Out-of-Plane Actuator Using Conductive Substrate
,”
Sci. Rep.
,
6
(
35118
). 10.1038/srep35118
14.
Ozdogan
,
M.
,
Daeichin
,
M.
,
Ramini
,
A.
, and
Towfighian
,
S.
,
2017
, “
Parametric Resonance of a Repulsive Force MEMS Electrostatic Mirror
,”
Sens. Actuators. A
,
265
, pp.
20
31
. 10.1016/j.sna.2017.07.043
15.
Pallay
,
M.
,
Daeichin
,
M.
, and
Towfighian
,
S.
,
2017
, “
Dynamic Behavior of an Electrostatic MEMS Resonator With Repulsive Actuation
,”
Nonlinear Dyn.
,
89
(
2
), pp.
1525
1538
. 10.1007/s11071-017-3532-z
16.
Daeichin
,
M.
,
Ozdogan
,
M.
,
Towfighian
,
S.
, and
Miles
,
R. N.
,
2019
, “
Dynamic Response of a Tunable MEMS Accelerometer Based on Repulsive Force
,”
Sens. Actuators. A
,
289
, pp.
34
43
. 10.1016/j.sna.2019.02.007
17.
Li
,
H.
,
Barnes
,
P.
,
Harding
,
E.
,
Duan
,
X.
,
Wang
,
T. D.
, and
Oldham
,
K. R.
,
2019
, “
Large-Displacement Vertical Electrostatic Microactuator Dynamics Using Duty-Cycled Softening/Stiffening Parametric Resonance
,”
J. Microelectromech. Syst.
,
28
(
3
), pp.
351
361
. 10.1109/jmems.2019.2911183
18.
Towfighian
,
S.
,
Seleim
,
A.
,
Abdel-Rahman
,
E.
, and
Heppler
,
G.
,
2011
, “
A Large-Stroke Electrostatic Micro-Actuator
,”
J. Micromech. Microeng.
,
21
(
7
), p.
075023
. 10.1088/0960-1317/21/7/075023
19.
Lee
,
K. B.
, and
Cho
,
Y. H.
,
2001
, “
Laterally Driven Electrostatic Repulsive-Force Microactuators Using Asymmetric Field Distribution
,”
J. Microelectromech. Syst.
,
10
(
1
), pp.
128
136
. 10.1109/84.911101
20.
Pallay
,
M.
, and
Towfighian
,
S.
,
2018
, “
A Reliable MEMS Switch Using Electrostatic Levitation
,”
Appl. Phys. Lett.
,
113
(
21
), p.
213102
. 10.1063/1.5053090
21.
Pallay
,
M.
,
Ibrahim
,
A. I.
,
Miles
,
R. N.
, and
Towfighian
,
S.
,
2019
, “
Pairing Electrostatic Levitation With Triboelectric Transduction for High-Performance Self-Powered MEMS Sensors and Actuators
,”
Appl. Phys. Lett.
,
115
(
13
), p.
133503
. 10.1063/1.5119814
22.
Ouakad
,
H. M.
,
2013
, “
Structural Behavior of Microbeams Actuated by Out-of-Plane Electrostatic Fringing-Fields
,”
Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition
,
San Diego, CA
,
Nov. 2013
.
23.
Ouakad
,
H. M.
,
2015
, “
Numerical Model for the Calculation of the Electrostatic Force in Non-Parallel Electrodes for MEMS Applications
,”
J. Electrostat.
,
76
, pp.
254
261
. 10.1016/j.elstat.2015.06.001
24.
Ouakad
,
H. M.
, and
Sedighi
,
H. M.
,
2019
, “
Static Response and Free Vibration of MEMS Arches Assuming Out-of-Plane Actuation Pattern
,”
Int. J. Non Linear Mech.
,
110
, pp.
44
57
. 10.1016/j.ijnonlinmec.2018.12.011
25.
Ouakad
,
H. M.
, and
Najar
,
F.
,
2019
, “
Nonlinear Dynamics of MEMS Arches Assuming Out-of-Plane Actuation Arrangement
,”
ASME J. Vib. Acoust.
,
141
(
4
), p.
041010
. 10.1115/1.4043064
26.
Younis
,
M. I.
,
2008
,
MEMS Linear and Nonlinear Statics and Dynamics
,
Wiley
,
New York
.
27.
Hah
,
D.
,
2018
, “
Analytical Design of Linear Variable Capacitors With Shaped-Finger Comb-Drive Actuators
,”
2018 Symposium on Design, Test, Integration Packaging of MEMS and MOEMS (DTIP)
,
Roma, Italy
,
May 2018
, pp.
1
5
.
28.
He
,
S.
, and
BenMrad
,
R.
,
2005
, “
Large-Stroke Microelectrostatic Actuators for Vertical Translation of Micromirrors Used in Adaptive Optics
,”
IEEE Trans. Ind. Electron.
,
52
(
4
), pp.
974
983
. 10.1109/TIE.2005.851682
29.
Krylov
,
S.
,
Ilic
,
B. R.
, and
Lulinsky
,
S.
,
2011
, “
Bistability of Curved Microbeams Actuated by Fringing Electrostatic Fields
,”
Nonlinear Dyn.
,
66
(
3
), pp.
403
426
. 10.1007/s11071-011-0038-y
30.
Krylov
,
S.
,
Molinazzi
,
N.
,
Shmilovich
,
T.
,
Pomerantz
,
U.
, and
Lulinsky
,
S.
,
2010
, “
Parametric Excitation of Flexural Vibrations of Micro Beams by Fringing Electrostatic Fields
,”
Proceedings of the ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2010
,
Montreal, QC
,
Aug. 2010
.
31.
Linzon
,
Y.
,
Ilic
,
B.
,
Lulinsky
,
S.
, and
Krylov
,
S.
,
2013
, “
Efficient Parametric Excitation of Silicon-on-Insulator Microcantilever Beams by Fringing Electrostatic Fields
,”
J. Appl. Phys.
,
113
(
16
), p.
163508
. 10.1063/1.4802680
32.
Miles
,
R. N.
,
2018
, “
A Compliant Capacitive Sensor for Acoustics: Avoiding Electrostatic Forces at High Bias Voltages
,”
IEEE Sens. J.
,
18
(
14
), pp.
5691
5698
. 10.1109/JSEN.2018.2841345
33.
Botello
,
M.
,
Beatriz
,
J.
, and
Caruntu
,
D. I.
,
2018
, “
Voltage Response of Circular Plate MEMS Resonators Under Superharmonic Resonance
,”
ASME International Mechanical Engineering Congress and Exposition, 4B: Dynamics, Vibration, and Control
,
Pittsburgh, PA
,
Nov. 2018
.
34.
Younis
,
M. I.
,
Alsaleem
,
F. M.
,
Miles
,
R. N.
, and
Su
,
Q.
,
2007
, “
Characterization of the Performance of Capacitive Switches Activated by Mechanical Shock
,”
J. Micromech. Microeng.
,
17
(
7
), p.
1360
. 10.1088/0960-1317/17/7/019
35.
Miller
,
J. M. L.
,
Ansari
,
A.
,
Heinz
,
D. B.
,
Chen
,
Y.
,
Flader
,
I. B.
,
Shin
,
D. D.
,
Villanueva
,
L. G.
, and
Kenny
,
T. W.
,
2018
, “
Effective Quality Factor Tuning Mechanisms in Micromechanical Resonators
,”
Appl. Phys. Rev.
,
5
(
4
), p.
041307
. 10.1063/1.5027850
You do not currently have access to this content.