Abstract

For damping of fully coupled beam vibrations, a three-component tuned mass absorber is proposed, consisting of two translational and a single-rotational absorber, which together target a specific vibration mode. The representation of the interaction with residual nonresonant vibration modes is consistently included by two supplemental terms in the absorber equation, calibrated by frequency matching with the full structural model for vanishing absorber damping. The absorber tuning directly includes these residual terms without approximation when the underlying modal representation is based on the vibration form with absorber masses rigidly attached to the structure. It is demonstrated that the desired damping behavior requires nonhomogeneous absorber balancing, obtained by an approximate method for the relative sizing of each absorber mass.

References

References
1.
Elias
,
S.
, and
Matsagar
,
V.
,
2017
, “
Research Developments in Vibration Control of Structures Using Passive Tuned Mass Dampers
,”
Annu. Rev. Control
,
44
, pp.
129
156
. 10.1016/j.arcontrol.2017.09.015
2.
Arrigan
,
J.
,
Pakrashi
,
V.
,
Basu
,
B.
, and
Nagarajaiah
,
S.
,
2011
, “
Control of Flapwise Vibrations in Wind Turbine Blades Using Semi-Active Tuned Mass Dampers
,”
Struct. Control Health Monit.
,
18
(
8
), pp.
840
851
. 10.1002/stc.404
3.
Casalotti
,
A.
,
Arena
,
A.
, and
Lacarbonara
,
W.
,
2014
, “
Mitigation of Post-Flutter Oscillations in Suspension Bridges by Hysteretic Tuned Mass Dampers
,”
Eng. Struct.
,
69
, pp.
62
71
. 10.1016/j.engstruct.2014.03.001
4.
Chen
,
S. R.
, and
Cai
,
C. S.
,
2004
, “
Coupled Vibration Control With Tuned Mass Damper for Long-Span Bridges
,”
J. Sound Vib.
,
278
(
1–2
), pp.
449
459
. 10.1016/j.jsv.2003.11.056
5.
Zheng
,
L.
,
Zhang
,
H.
,
Zhao
,
B.
, and
Xianjie
,
L.
,
2018
, “
Shaking Table Test and Numerical Simulation on Vibration Control Effects of TMD With Different Mass Ratios on a Super High-Rise Structure
,”
Struct. Des. Tall Special Build.
,
27
(
9
), p.
e1470
. 10.1002/tal.1470
6.
Den Hartog
,
J. P.
,
1956
,
Mechanical Vibrations
, 4th ed.,
McGraw-Hill
,
New York
. (
Reprinted by Dover, New York, 1985
.)
7.
Krenk
,
S.
,
2005
, “
Frequency Analysis of the Tuned Mass Damper
,”
ASME J. Appl. Mech.
,
72
(
6
), pp.
936
942
. 10.1115/1.2062867
8.
Krenk
,
S.
, and
Høgsberg
,
J.
,
2016
, “
Tuned Resonant Mass Or Inerter-Based Absorbers: Unified Calibration With Quasi-Dynamic Flexibility and Inertia Correction
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
472
(
2185
), p.
20150718
. 10.1098/rspa.2015.0718
9.
Høgsberg
,
J.
,
2019
, “
A Robust Calibration Procedure for Multiple Electromechanical Shunt Absorbers on a Flexible Structure
,”
Proceedings of the IX ECCOMAS Thematic Conference on Smart Structures and Materials
,
Paris, France
,
July 8–11
, pp.
884
895
.
10.
Jangid
,
R. S.
, and
Datta
,
T. K.
,
1997
, “
Performance of Multiple Tuned Mass Dampers for Torsionally Coupled Systems
,”
Earthquake Eng. Struct. Dyn.
,
26
(
3
), pp.
307
317
. 10.1002/(SICI)1096-9845(199703)26:3<307::AID-EQE639>3.3.CO;2-#
11.
Li
,
C.
, and
Qu
,
W.
,
2006
, “
Optimum Properties of Multiple Tuned Mass Dampers for Reduction of Translational and Torsional Response of Structures Subject to Ground Acceleration
,”
Eng. Struct.
,
28
(
4
), pp.
472
494
10.1016/j.engstruct.2005.09.003
12.
Lin
,
C. C.
,
Ueng
,
J. M.
, and
Huang
,
T. C.
,
2000
, “
Seismic Response Reduction of Irregular Buildings Using Passive Tuned Mass Dampers
,”
Eng. Struct.
,
22
(
5
), pp.
513
524
. 10.1016/S0141-0296(98)00054-6
13.
Febbo
,
M.
, and
Vera
,
S. A.
,
2008
, “
Optimization of a Two Degree of Freedom System Acting as a Dynamic Vibration Absorber
,”
ASME J. Vib. Acoust.
,
130
(
1
), p.
011013
. 10.1115/1.2827368
14.
Daniel
,
Y.
, and
Lavan
,
O.
,
2014
, “
Gradient Based Optimal Seismic Retrofitting of 3D Irregular Buildings Using Multiple Tuned Mass Dampers
,”
Comput. Struct.
,
139
, pp.
84
97
. 10.1016/j.compstruc.2014.03.002
15.
Zuo
,
H.
,
Bi
,
K.
, and
Hao
,
H.
,
2019
, “
Mitigation of Tower and Out-of-Plane Blade Vibrations of Offshore Monopile Wind Turbines by Using Multiple Tuned Mass Dampers
,”
Struct. Infrastruct. Eng.
,
15
(
2
), pp.
169
284
. 10.1080/15732479.2018.1550096
16.
Snowdon
,
J. C.
,
1984
, “
The Cruciform Dynamic Vibration Absorber
,”
J. Acoust. Soc. Am.
,
75
(
6
), pp.
1792
1799
. 10.1121/1.390980
17.
Mokrani
,
B.
,
Tian
,
Z.
,
Alaluf
,
D.
,
Meng
,
F.
, and
Preumont
,
A.
,
2017
, “
Passive Damping of Suspension Bridges Using Multi-Degree of Freedom Tuned Mass Dampers
,”
Eng. Struct.
,
153
, pp.
749
756
. 10.1016/j.engstruct.2017.10.028
18.
Main
,
J. A.
, and
Krenk
,
S.
,
2005
, “
Efficiency and Tuning of Viscous Dampers on Discrete Systems
,”
J. Sound Vib.
,
286
(
1–2
), pp.
97
12
. 10.1016/j.jsv.2004.09.022
19.
Gere
,
J. M.
, and
Li
,
Y. K.
,
1958
, “
Couped Vibrations of Thin-Walled Beams of Open Cross Section
,”
ASME J. Appl. Mech.
,
A-26
, pp.
373
378
.
20.
Krenk
,
S.
, and
Høgsberg
,
J.
,
2008
, “
Tuned Mass Absorbers on Damped Structures Under Random Load
,”
Probab. Eng. Mech.
,
23
(
4
), pp.
408
415
. 10.1016/j.probengmech.2007.04.004
21.
Krenk
,
S.
, and
Høgsberg
,
J.
,
2014
, “
Tuned Mass Absorber on a Flexible Structure
,”
J. Sound Vib.
,
333
(
6
), pp.
1577
1595
. 10.1016/j.jsv.2013.11.029
22.
Krenk
,
S.
, and
Høgsberg
,
J.
,
2012
, “
Equal Modal Damping Design for a Family of Resonant Vibration Control Formats
,”
J. Vib. Control
,
19
(
9
), pp.
1294
1315
. 10.1177/1077546312446796
23.
Géradin
,
M.
, and
Cardona
,
A.
,
2001
,
Flexible Multibody Dynamics, A Finite Element Approach
,
Wiley
,
New York
.
You do not currently have access to this content.